Metamath Proof Explorer


Theorem cycpm3cl2

Description: Closure of the 3-cycles in the class of 3-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c 𝐶 = ( toCyc ‘ 𝐷 )
cycpm3.s 𝑆 = ( SymGrp ‘ 𝐷 )
cycpm3.d ( 𝜑𝐷𝑉 )
cycpm3.i ( 𝜑𝐼𝐷 )
cycpm3.j ( 𝜑𝐽𝐷 )
cycpm3.k ( 𝜑𝐾𝐷 )
cycpm3.1 ( 𝜑𝐼𝐽 )
cycpm3.2 ( 𝜑𝐽𝐾 )
cycpm3.3 ( 𝜑𝐾𝐼 )
Assertion cycpm3cl2 ( 𝜑 → ( 𝐶 ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) ∈ ( 𝐶 “ ( ♯ “ { 3 } ) ) )

Proof

Step Hyp Ref Expression
1 cycpm3.c 𝐶 = ( toCyc ‘ 𝐷 )
2 cycpm3.s 𝑆 = ( SymGrp ‘ 𝐷 )
3 cycpm3.d ( 𝜑𝐷𝑉 )
4 cycpm3.i ( 𝜑𝐼𝐷 )
5 cycpm3.j ( 𝜑𝐽𝐷 )
6 cycpm3.k ( 𝜑𝐾𝐷 )
7 cycpm3.1 ( 𝜑𝐼𝐽 )
8 cycpm3.2 ( 𝜑𝐽𝐾 )
9 cycpm3.3 ( 𝜑𝐾𝐼 )
10 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
11 1 2 10 tocycf ( 𝐷𝑉𝐶 : { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ⟶ ( Base ‘ 𝑆 ) )
12 3 11 syl ( 𝜑𝐶 : { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ⟶ ( Base ‘ 𝑆 ) )
13 12 ffnd ( 𝜑𝐶 Fn { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } )
14 id ( 𝑤 = ⟨“ 𝐼 𝐽 𝐾 ”⟩ → 𝑤 = ⟨“ 𝐼 𝐽 𝐾 ”⟩ )
15 dmeq ( 𝑤 = ⟨“ 𝐼 𝐽 𝐾 ”⟩ → dom 𝑤 = dom ⟨“ 𝐼 𝐽 𝐾 ”⟩ )
16 eqidd ( 𝑤 = ⟨“ 𝐼 𝐽 𝐾 ”⟩ → 𝐷 = 𝐷 )
17 14 15 16 f1eq123d ( 𝑤 = ⟨“ 𝐼 𝐽 𝐾 ”⟩ → ( 𝑤 : dom 𝑤1-1𝐷 ↔ ⟨“ 𝐼 𝐽 𝐾 ”⟩ : dom ⟨“ 𝐼 𝐽 𝐾 ”⟩ –1-1𝐷 ) )
18 4 5 6 s3cld ( 𝜑 → ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ Word 𝐷 )
19 4 5 6 7 8 9 s3f1 ( 𝜑 → ⟨“ 𝐼 𝐽 𝐾 ”⟩ : dom ⟨“ 𝐼 𝐽 𝐾 ”⟩ –1-1𝐷 )
20 17 18 19 elrabd ( 𝜑 → ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } )
21 s3clhash ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ ( ♯ “ { 3 } )
22 21 a1i ( 𝜑 → ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ ( ♯ “ { 3 } ) )
23 13 20 22 fnfvimad ( 𝜑 → ( 𝐶 ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) ∈ ( 𝐶 “ ( ♯ “ { 3 } ) ) )