| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpm3.c |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
| 2 |
|
cycpm3.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 3 |
|
cycpm3.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 4 |
|
cycpm3.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
| 5 |
|
cycpm3.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝐷 ) |
| 6 |
|
cycpm3.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝐷 ) |
| 7 |
|
cycpm3.1 |
⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) |
| 8 |
|
cycpm3.2 |
⊢ ( 𝜑 → 𝐽 ≠ 𝐾 ) |
| 9 |
|
cycpm3.3 |
⊢ ( 𝜑 → 𝐾 ≠ 𝐼 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 11 |
1 2 10
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝐶 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝐶 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
| 13 |
12
|
ffnd |
⊢ ( 𝜑 → 𝐶 Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 14 |
|
id |
⊢ ( 𝑤 = 〈“ 𝐼 𝐽 𝐾 ”〉 → 𝑤 = 〈“ 𝐼 𝐽 𝐾 ”〉 ) |
| 15 |
|
dmeq |
⊢ ( 𝑤 = 〈“ 𝐼 𝐽 𝐾 ”〉 → dom 𝑤 = dom 〈“ 𝐼 𝐽 𝐾 ”〉 ) |
| 16 |
|
eqidd |
⊢ ( 𝑤 = 〈“ 𝐼 𝐽 𝐾 ”〉 → 𝐷 = 𝐷 ) |
| 17 |
14 15 16
|
f1eq123d |
⊢ ( 𝑤 = 〈“ 𝐼 𝐽 𝐾 ”〉 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 〈“ 𝐼 𝐽 𝐾 ”〉 : dom 〈“ 𝐼 𝐽 𝐾 ”〉 –1-1→ 𝐷 ) ) |
| 18 |
4 5 6
|
s3cld |
⊢ ( 𝜑 → 〈“ 𝐼 𝐽 𝐾 ”〉 ∈ Word 𝐷 ) |
| 19 |
4 5 6 7 8 9
|
s3f1 |
⊢ ( 𝜑 → 〈“ 𝐼 𝐽 𝐾 ”〉 : dom 〈“ 𝐼 𝐽 𝐾 ”〉 –1-1→ 𝐷 ) |
| 20 |
17 18 19
|
elrabd |
⊢ ( 𝜑 → 〈“ 𝐼 𝐽 𝐾 ”〉 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 21 |
|
s3clhash |
⊢ 〈“ 𝐼 𝐽 𝐾 ”〉 ∈ ( ◡ ♯ “ { 3 } ) |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 〈“ 𝐼 𝐽 𝐾 ”〉 ∈ ( ◡ ♯ “ { 3 } ) ) |
| 23 |
13 20 22
|
fnfvimad |
⊢ ( 𝜑 → ( 𝐶 ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) ∈ ( 𝐶 “ ( ◡ ♯ “ { 3 } ) ) ) |