| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpm3.c | ⊢ 𝐶  =  ( toCyc ‘ 𝐷 ) | 
						
							| 2 |  | cycpm3.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpm3.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | cycpm3.i | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 5 |  | cycpm3.j | ⊢ ( 𝜑  →  𝐽  ∈  𝐷 ) | 
						
							| 6 |  | cycpm3.k | ⊢ ( 𝜑  →  𝐾  ∈  𝐷 ) | 
						
							| 7 |  | cycpm3.1 | ⊢ ( 𝜑  →  𝐼  ≠  𝐽 ) | 
						
							| 8 |  | cycpm3.2 | ⊢ ( 𝜑  →  𝐽  ≠  𝐾 ) | 
						
							| 9 |  | cycpm3.3 | ⊢ ( 𝜑  →  𝐾  ≠  𝐼 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 11 | 1 2 10 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝐶 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 12 | 3 11 | syl | ⊢ ( 𝜑  →  𝐶 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 13 | 12 | ffnd | ⊢ ( 𝜑  →  𝐶  Fn  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 14 |  | id | ⊢ ( 𝑤  =  〈“ 𝐼 𝐽 𝐾 ”〉  →  𝑤  =  〈“ 𝐼 𝐽 𝐾 ”〉 ) | 
						
							| 15 |  | dmeq | ⊢ ( 𝑤  =  〈“ 𝐼 𝐽 𝐾 ”〉  →  dom  𝑤  =  dom  〈“ 𝐼 𝐽 𝐾 ”〉 ) | 
						
							| 16 |  | eqidd | ⊢ ( 𝑤  =  〈“ 𝐼 𝐽 𝐾 ”〉  →  𝐷  =  𝐷 ) | 
						
							| 17 | 14 15 16 | f1eq123d | ⊢ ( 𝑤  =  〈“ 𝐼 𝐽 𝐾 ”〉  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  〈“ 𝐼 𝐽 𝐾 ”〉 : dom  〈“ 𝐼 𝐽 𝐾 ”〉 –1-1→ 𝐷 ) ) | 
						
							| 18 | 4 5 6 | s3cld | ⊢ ( 𝜑  →  〈“ 𝐼 𝐽 𝐾 ”〉  ∈  Word  𝐷 ) | 
						
							| 19 | 4 5 6 7 8 9 | s3f1 | ⊢ ( 𝜑  →  〈“ 𝐼 𝐽 𝐾 ”〉 : dom  〈“ 𝐼 𝐽 𝐾 ”〉 –1-1→ 𝐷 ) | 
						
							| 20 | 17 18 19 | elrabd | ⊢ ( 𝜑  →  〈“ 𝐼 𝐽 𝐾 ”〉  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 21 |  | s3clhash | ⊢ 〈“ 𝐼 𝐽 𝐾 ”〉  ∈  ( ◡ ♯  “  { 3 } ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  〈“ 𝐼 𝐽 𝐾 ”〉  ∈  ( ◡ ♯  “  { 3 } ) ) | 
						
							| 23 | 13 20 22 | fnfvimad | ⊢ ( 𝜑  →  ( 𝐶 ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 )  ∈  ( 𝐶  “  ( ◡ ♯  “  { 3 } ) ) ) |