Metamath Proof Explorer


Theorem cycpm3cl2

Description: Closure of the 3-cycles in the class of 3-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c C = toCyc D
cycpm3.s S = SymGrp D
cycpm3.d φ D V
cycpm3.i φ I D
cycpm3.j φ J D
cycpm3.k φ K D
cycpm3.1 φ I J
cycpm3.2 φ J K
cycpm3.3 φ K I
Assertion cycpm3cl2 φ C ⟨“ IJK ”⟩ C . -1 3

Proof

Step Hyp Ref Expression
1 cycpm3.c C = toCyc D
2 cycpm3.s S = SymGrp D
3 cycpm3.d φ D V
4 cycpm3.i φ I D
5 cycpm3.j φ J D
6 cycpm3.k φ K D
7 cycpm3.1 φ I J
8 cycpm3.2 φ J K
9 cycpm3.3 φ K I
10 eqid Base S = Base S
11 1 2 10 tocycf D V C : w Word D | w : dom w 1-1 D Base S
12 3 11 syl φ C : w Word D | w : dom w 1-1 D Base S
13 12 ffnd φ C Fn w Word D | w : dom w 1-1 D
14 id w = ⟨“ IJK ”⟩ w = ⟨“ IJK ”⟩
15 dmeq w = ⟨“ IJK ”⟩ dom w = dom ⟨“ IJK ”⟩
16 eqidd w = ⟨“ IJK ”⟩ D = D
17 14 15 16 f1eq123d w = ⟨“ IJK ”⟩ w : dom w 1-1 D ⟨“ IJK ”⟩ : dom ⟨“ IJK ”⟩ 1-1 D
18 4 5 6 s3cld φ ⟨“ IJK ”⟩ Word D
19 4 5 6 7 8 9 s3f1 φ ⟨“ IJK ”⟩ : dom ⟨“ IJK ”⟩ 1-1 D
20 17 18 19 elrabd φ ⟨“ IJK ”⟩ w Word D | w : dom w 1-1 D
21 s3clhash ⟨“ IJK ”⟩ . -1 3
22 21 a1i φ ⟨“ IJK ”⟩ . -1 3
23 13 20 22 fnfvimad φ C ⟨“ IJK ”⟩ C . -1 3