Metamath Proof Explorer


Theorem cycpm3cl2

Description: Closure of the 3-cycles in the class of 3-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c C=toCycD
cycpm3.s S=SymGrpD
cycpm3.d φDV
cycpm3.i φID
cycpm3.j φJD
cycpm3.k φKD
cycpm3.1 φIJ
cycpm3.2 φJK
cycpm3.3 φKI
Assertion cycpm3cl2 φC⟨“IJK”⟩C.-13

Proof

Step Hyp Ref Expression
1 cycpm3.c C=toCycD
2 cycpm3.s S=SymGrpD
3 cycpm3.d φDV
4 cycpm3.i φID
5 cycpm3.j φJD
6 cycpm3.k φKD
7 cycpm3.1 φIJ
8 cycpm3.2 φJK
9 cycpm3.3 φKI
10 eqid BaseS=BaseS
11 1 2 10 tocycf DVC:wWordD|w:domw1-1DBaseS
12 3 11 syl φC:wWordD|w:domw1-1DBaseS
13 12 ffnd φCFnwWordD|w:domw1-1D
14 id w=⟨“IJK”⟩w=⟨“IJK”⟩
15 dmeq w=⟨“IJK”⟩domw=dom⟨“IJK”⟩
16 eqidd w=⟨“IJK”⟩D=D
17 14 15 16 f1eq123d w=⟨“IJK”⟩w:domw1-1D⟨“IJK”⟩:dom⟨“IJK”⟩1-1D
18 4 5 6 s3cld φ⟨“IJK”⟩WordD
19 4 5 6 7 8 9 s3f1 φ⟨“IJK”⟩:dom⟨“IJK”⟩1-1D
20 17 18 19 elrabd φ⟨“IJK”⟩wWordD|w:domw1-1D
21 s3clhash ⟨“IJK”⟩.-13
22 21 a1i φ⟨“IJK”⟩.-13
23 13 20 22 fnfvimad φC⟨“IJK”⟩C.-13