Step |
Hyp |
Ref |
Expression |
1 |
|
tocycf.c |
|
2 |
|
tocycf.s |
|
3 |
|
tocycf.b |
|
4 |
1
|
tocycval |
|
5 |
|
simpr |
|
6 |
5
|
rneqd |
|
7 |
|
rn0 |
|
8 |
6 7
|
eqtrdi |
|
9 |
8
|
difeq2d |
|
10 |
|
dif0 |
|
11 |
9 10
|
eqtrdi |
|
12 |
11
|
reseq2d |
|
13 |
5
|
cnveqd |
|
14 |
|
cnv0 |
|
15 |
13 14
|
eqtrdi |
|
16 |
15
|
coeq2d |
|
17 |
|
co02 |
|
18 |
16 17
|
eqtrdi |
|
19 |
12 18
|
uneq12d |
|
20 |
|
un0 |
|
21 |
19 20
|
eqtrdi |
|
22 |
2
|
idresperm |
|
23 |
22 3
|
eleqtrrdi |
|
24 |
23
|
ad2antrr |
|
25 |
21 24
|
eqeltrd |
|
26 |
|
difexg |
|
27 |
26
|
resiexd |
|
28 |
|
ovex |
|
29 |
|
vex |
|
30 |
29
|
cnvex |
|
31 |
28 30
|
coex |
|
32 |
|
unexg |
|
33 |
27 31 32
|
sylancl |
|
34 |
33
|
adantr |
|
35 |
4 34
|
fvmpt2d |
|
36 |
35
|
adantr |
|
37 |
|
simpll |
|
38 |
|
simplr |
|
39 |
|
id |
|
40 |
|
dmeq |
|
41 |
|
eqidd |
|
42 |
39 40 41
|
f1eq123d |
|
43 |
42
|
elrab |
|
44 |
38 43
|
sylib |
|
45 |
44
|
simpld |
|
46 |
44
|
simprd |
|
47 |
1 37 45 46 2
|
cycpmcl |
|
48 |
47 3
|
eleqtrrdi |
|
49 |
36 48
|
eqeltrrd |
|
50 |
25 49
|
pm2.61dane |
|
51 |
4 50
|
fmpt3d |
|