| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tocycf.c |
|
| 2 |
|
tocycf.s |
|
| 3 |
|
tocycf.b |
|
| 4 |
1
|
tocycval |
|
| 5 |
|
simpr |
|
| 6 |
5
|
rneqd |
|
| 7 |
|
rn0 |
|
| 8 |
6 7
|
eqtrdi |
|
| 9 |
8
|
difeq2d |
|
| 10 |
|
dif0 |
|
| 11 |
9 10
|
eqtrdi |
|
| 12 |
11
|
reseq2d |
|
| 13 |
5
|
cnveqd |
|
| 14 |
|
cnv0 |
|
| 15 |
13 14
|
eqtrdi |
|
| 16 |
15
|
coeq2d |
|
| 17 |
|
co02 |
|
| 18 |
16 17
|
eqtrdi |
|
| 19 |
12 18
|
uneq12d |
|
| 20 |
|
un0 |
|
| 21 |
19 20
|
eqtrdi |
|
| 22 |
2
|
idresperm |
|
| 23 |
22 3
|
eleqtrrdi |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
21 24
|
eqeltrd |
|
| 26 |
|
difexg |
|
| 27 |
26
|
resiexd |
|
| 28 |
|
ovex |
|
| 29 |
|
vex |
|
| 30 |
29
|
cnvex |
|
| 31 |
28 30
|
coex |
|
| 32 |
|
unexg |
|
| 33 |
27 31 32
|
sylancl |
|
| 34 |
33
|
adantr |
|
| 35 |
4 34
|
fvmpt2d |
|
| 36 |
35
|
adantr |
|
| 37 |
|
simpll |
|
| 38 |
|
simplr |
|
| 39 |
|
id |
|
| 40 |
|
dmeq |
|
| 41 |
|
eqidd |
|
| 42 |
39 40 41
|
f1eq123d |
|
| 43 |
42
|
elrab |
|
| 44 |
38 43
|
sylib |
|
| 45 |
44
|
simpld |
|
| 46 |
44
|
simprd |
|
| 47 |
1 37 45 46 2
|
cycpmcl |
|
| 48 |
47 3
|
eleqtrrdi |
|
| 49 |
36 48
|
eqeltrrd |
|
| 50 |
25 49
|
pm2.61dane |
|
| 51 |
4 50
|
fmpt3d |
|