Step |
Hyp |
Ref |
Expression |
1 |
|
tocyc01.1 |
|
2 |
|
simpl |
|
3 |
|
simpr |
|
4 |
3
|
elin1d |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
1 5 6
|
tocycf |
|
8 |
|
fdm |
|
9 |
2 7 8
|
3syl |
|
10 |
4 9
|
eleqtrd |
|
11 |
|
id |
|
12 |
|
dmeq |
|
13 |
|
eqidd |
|
14 |
11 12 13
|
f1eq123d |
|
15 |
14
|
elrab |
|
16 |
10 15
|
sylib |
|
17 |
16
|
simpld |
|
18 |
16
|
simprd |
|
19 |
1 2 17 18
|
tocycfv |
|
20 |
19
|
adantr |
|
21 |
|
hasheq0 |
|
22 |
3 21
|
syl |
|
23 |
22
|
biimpa |
|
24 |
|
rneq |
|
25 |
|
rn0 |
|
26 |
24 25
|
eqtrdi |
|
27 |
26
|
difeq2d |
|
28 |
|
dif0 |
|
29 |
27 28
|
eqtrdi |
|
30 |
29
|
reseq2d |
|
31 |
|
cnveq |
|
32 |
|
cnv0 |
|
33 |
31 32
|
eqtrdi |
|
34 |
33
|
coeq2d |
|
35 |
|
co02 |
|
36 |
34 35
|
eqtrdi |
|
37 |
30 36
|
uneq12d |
|
38 |
|
un0 |
|
39 |
37 38
|
eqtrdi |
|
40 |
23 39
|
syl |
|
41 |
20 40
|
eqtrd |
|
42 |
19
|
adantr |
|
43 |
17
|
adantr |
|
44 |
|
1zzd |
|
45 |
|
simpr |
|
46 |
|
1cshid |
|
47 |
43 44 45 46
|
syl3anc |
|
48 |
47
|
coeq1d |
|
49 |
|
wrdf |
|
50 |
|
ffun |
|
51 |
|
funcocnv2 |
|
52 |
43 49 50 51
|
4syl |
|
53 |
48 52
|
eqtrd |
|
54 |
53
|
uneq2d |
|
55 |
|
resundi |
|
56 |
|
frn |
|
57 |
|
undifr |
|
58 |
56 57
|
sylib |
|
59 |
43 49 58
|
3syl |
|
60 |
59
|
reseq2d |
|
61 |
55 60
|
eqtr3id |
|
62 |
42 54 61
|
3eqtrd |
|
63 |
3
|
elin2d |
|
64 |
|
hashf |
|
65 |
|
ffn |
|
66 |
|
elpreima |
|
67 |
64 65 66
|
mp2b |
|
68 |
63 67
|
sylib |
|
69 |
68
|
simprd |
|
70 |
|
elpri |
|
71 |
69 70
|
syl |
|
72 |
41 62 71
|
mpjaodan |
|