| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tocyc01.1 |
|
| 2 |
|
simpl |
|
| 3 |
|
simpr |
|
| 4 |
3
|
elin1d |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
1 5 6
|
tocycf |
|
| 8 |
|
fdm |
|
| 9 |
2 7 8
|
3syl |
|
| 10 |
4 9
|
eleqtrd |
|
| 11 |
|
id |
|
| 12 |
|
dmeq |
|
| 13 |
|
eqidd |
|
| 14 |
11 12 13
|
f1eq123d |
|
| 15 |
14
|
elrab |
|
| 16 |
10 15
|
sylib |
|
| 17 |
16
|
simpld |
|
| 18 |
16
|
simprd |
|
| 19 |
1 2 17 18
|
tocycfv |
|
| 20 |
19
|
adantr |
|
| 21 |
|
hasheq0 |
|
| 22 |
3 21
|
syl |
|
| 23 |
22
|
biimpa |
|
| 24 |
|
rneq |
|
| 25 |
|
rn0 |
|
| 26 |
24 25
|
eqtrdi |
|
| 27 |
26
|
difeq2d |
|
| 28 |
|
dif0 |
|
| 29 |
27 28
|
eqtrdi |
|
| 30 |
29
|
reseq2d |
|
| 31 |
|
cnveq |
|
| 32 |
|
cnv0 |
|
| 33 |
31 32
|
eqtrdi |
|
| 34 |
33
|
coeq2d |
|
| 35 |
|
co02 |
|
| 36 |
34 35
|
eqtrdi |
|
| 37 |
30 36
|
uneq12d |
|
| 38 |
|
un0 |
|
| 39 |
37 38
|
eqtrdi |
|
| 40 |
23 39
|
syl |
|
| 41 |
20 40
|
eqtrd |
|
| 42 |
19
|
adantr |
|
| 43 |
17
|
adantr |
|
| 44 |
|
1zzd |
|
| 45 |
|
simpr |
|
| 46 |
|
1cshid |
|
| 47 |
43 44 45 46
|
syl3anc |
|
| 48 |
47
|
coeq1d |
|
| 49 |
|
wrdf |
|
| 50 |
|
ffun |
|
| 51 |
|
funcocnv2 |
|
| 52 |
43 49 50 51
|
4syl |
|
| 53 |
48 52
|
eqtrd |
|
| 54 |
53
|
uneq2d |
|
| 55 |
|
resundi |
|
| 56 |
|
frn |
|
| 57 |
|
undifr |
|
| 58 |
56 57
|
sylib |
|
| 59 |
43 49 58
|
3syl |
|
| 60 |
59
|
reseq2d |
|
| 61 |
55 60
|
eqtr3id |
|
| 62 |
42 54 61
|
3eqtrd |
|
| 63 |
3
|
elin2d |
|
| 64 |
|
hashf |
|
| 65 |
|
ffn |
|
| 66 |
|
elpreima |
|
| 67 |
64 65 66
|
mp2b |
|
| 68 |
63 67
|
sylib |
|
| 69 |
68
|
simprd |
|
| 70 |
|
elpri |
|
| 71 |
69 70
|
syl |
|
| 72 |
41 62 71
|
mpjaodan |
|