| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpm2.c |
|
| 2 |
|
cycpm2.d |
|
| 3 |
|
cycpm2.i |
|
| 4 |
|
cycpm2.j |
|
| 5 |
|
cycpm2.1 |
|
| 6 |
|
cycpm2tr.t |
|
| 7 |
|
partfun |
|
| 8 |
7
|
a1i |
|
| 9 |
|
cshw1s2 |
|
| 10 |
3 4 9
|
syl2anc |
|
| 11 |
10
|
coeq1d |
|
| 12 |
|
0nn0 |
|
| 13 |
12
|
a1i |
|
| 14 |
|
1nn0 |
|
| 15 |
14
|
a1i |
|
| 16 |
|
0ne1 |
|
| 17 |
16
|
a1i |
|
| 18 |
13 4 15 3 17 3 4 5
|
coprprop |
|
| 19 |
|
s2prop |
|
| 20 |
4 3 19
|
syl2anc |
|
| 21 |
|
s2prop |
|
| 22 |
3 4 21
|
syl2anc |
|
| 23 |
22
|
cnveqd |
|
| 24 |
|
cnvprop |
|
| 25 |
13 3 15 4 24
|
syl22anc |
|
| 26 |
23 25
|
eqtrd |
|
| 27 |
20 26
|
coeq12d |
|
| 28 |
3 4 4 3 5
|
mptprop |
|
| 29 |
3 4
|
prssd |
|
| 30 |
|
dfss2 |
|
| 31 |
29 30
|
sylib |
|
| 32 |
|
incom |
|
| 33 |
31 32
|
eqtr3di |
|
| 34 |
|
simpr |
|
| 35 |
34
|
sneqd |
|
| 36 |
35
|
difeq2d |
|
| 37 |
36
|
unieqd |
|
| 38 |
|
difprsn1 |
|
| 39 |
38
|
unieqd |
|
| 40 |
5 39
|
syl |
|
| 41 |
|
unisng |
|
| 42 |
4 41
|
syl |
|
| 43 |
40 42
|
eqtrd |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
37 44
|
eqtr2d |
|
| 46 |
|
vex |
|
| 47 |
46
|
elpr |
|
| 48 |
|
df-or |
|
| 49 |
47 48
|
sylbb |
|
| 50 |
49
|
imp |
|
| 51 |
50
|
adantll |
|
| 52 |
51
|
sneqd |
|
| 53 |
52
|
difeq2d |
|
| 54 |
53
|
unieqd |
|
| 55 |
|
difprsn2 |
|
| 56 |
55
|
unieqd |
|
| 57 |
5 56
|
syl |
|
| 58 |
|
unisng |
|
| 59 |
3 58
|
syl |
|
| 60 |
57 59
|
eqtrd |
|
| 61 |
60
|
ad2antrr |
|
| 62 |
54 61
|
eqtr2d |
|
| 63 |
45 62
|
ifeqda |
|
| 64 |
33 63
|
mpteq12dva |
|
| 65 |
28 64
|
eqtr2d |
|
| 66 |
18 27 65
|
3eqtr4d |
|
| 67 |
11 66
|
eqtrd |
|
| 68 |
3 4
|
s2rn |
|
| 69 |
68
|
difeq2d |
|
| 70 |
69
|
reseq2d |
|
| 71 |
|
mptresid |
|
| 72 |
70 71
|
eqtrdi |
|
| 73 |
67 72
|
uneq12d |
|
| 74 |
|
uncom |
|
| 75 |
74
|
a1i |
|
| 76 |
8 73 75
|
3eqtr2rd |
|
| 77 |
3 4
|
s2cld |
|
| 78 |
3 4 5
|
s2f1 |
|
| 79 |
1 2 77 78
|
tocycfv |
|
| 80 |
|
enpr2 |
|
| 81 |
3 4 5 80
|
syl3anc |
|
| 82 |
6
|
pmtrval |
|
| 83 |
2 29 81 82
|
syl3anc |
|
| 84 |
76 79 83
|
3eqtr4d |
|