Metamath Proof Explorer


Theorem mptprop

Description: Rewrite pairs of ordered pairs as mapping to functions. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses brprop.a φAV
brprop.b φBW
brprop.c φCV
brprop.d φDW
mptprop.1 φAC
Assertion mptprop φABCD=xACifx=ABD

Proof

Step Hyp Ref Expression
1 brprop.a φAV
2 brprop.b φBW
3 brprop.c φCV
4 brprop.d φDW
5 mptprop.1 φAC
6 df-pr ABCD=ABCD
7 fmptsn AVBWAB=xAB
8 1 2 7 syl2anc φAB=xAB
9 incom AAC=ACA
10 prid1g AVAAC
11 snssi AACAAC
12 1 10 11 3syl φAAC
13 df-ss AACAAC=A
14 12 13 sylib φAAC=A
15 9 14 eqtr3id φACA=A
16 15 mpteq1d φxACAB=xAB
17 8 16 eqtr4d φAB=xACAB
18 fmptsn CVDWCD=xCD
19 3 4 18 syl2anc φCD=xCD
20 difprsn1 ACACA=C
21 5 20 syl φACA=C
22 21 mpteq1d φxACAD=xCD
23 19 22 eqtr4d φCD=xACAD
24 17 23 uneq12d φABCD=xACABxACAD
25 partfun xACifxABD=xACABxACAD
26 24 25 eqtr4di φABCD=xACifxABD
27 elsn2g AVxAx=A
28 1 27 syl φxAx=A
29 28 ifbid φifxABD=ifx=ABD
30 29 mpteq2dv φxACifxABD=xACifx=ABD
31 26 30 eqtrd φABCD=xACifx=ABD
32 6 31 eqtrid φABCD=xACifx=ABD