| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brprop.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | brprop.b |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | brprop.c |  |-  ( ph -> C e. V ) | 
						
							| 4 |  | brprop.d |  |-  ( ph -> D e. W ) | 
						
							| 5 |  | mptprop.1 |  |-  ( ph -> A =/= C ) | 
						
							| 6 |  | df-pr |  |-  { <. A , B >. , <. C , D >. } = ( { <. A , B >. } u. { <. C , D >. } ) | 
						
							| 7 |  | fmptsn |  |-  ( ( A e. V /\ B e. W ) -> { <. A , B >. } = ( x e. { A } |-> B ) ) | 
						
							| 8 | 1 2 7 | syl2anc |  |-  ( ph -> { <. A , B >. } = ( x e. { A } |-> B ) ) | 
						
							| 9 |  | incom |  |-  ( { A } i^i { A , C } ) = ( { A , C } i^i { A } ) | 
						
							| 10 |  | prid1g |  |-  ( A e. V -> A e. { A , C } ) | 
						
							| 11 |  | snssi |  |-  ( A e. { A , C } -> { A } C_ { A , C } ) | 
						
							| 12 | 1 10 11 | 3syl |  |-  ( ph -> { A } C_ { A , C } ) | 
						
							| 13 |  | dfss2 |  |-  ( { A } C_ { A , C } <-> ( { A } i^i { A , C } ) = { A } ) | 
						
							| 14 | 12 13 | sylib |  |-  ( ph -> ( { A } i^i { A , C } ) = { A } ) | 
						
							| 15 | 9 14 | eqtr3id |  |-  ( ph -> ( { A , C } i^i { A } ) = { A } ) | 
						
							| 16 | 15 | mpteq1d |  |-  ( ph -> ( x e. ( { A , C } i^i { A } ) |-> B ) = ( x e. { A } |-> B ) ) | 
						
							| 17 | 8 16 | eqtr4d |  |-  ( ph -> { <. A , B >. } = ( x e. ( { A , C } i^i { A } ) |-> B ) ) | 
						
							| 18 |  | fmptsn |  |-  ( ( C e. V /\ D e. W ) -> { <. C , D >. } = ( x e. { C } |-> D ) ) | 
						
							| 19 | 3 4 18 | syl2anc |  |-  ( ph -> { <. C , D >. } = ( x e. { C } |-> D ) ) | 
						
							| 20 |  | difprsn1 |  |-  ( A =/= C -> ( { A , C } \ { A } ) = { C } ) | 
						
							| 21 | 5 20 | syl |  |-  ( ph -> ( { A , C } \ { A } ) = { C } ) | 
						
							| 22 | 21 | mpteq1d |  |-  ( ph -> ( x e. ( { A , C } \ { A } ) |-> D ) = ( x e. { C } |-> D ) ) | 
						
							| 23 | 19 22 | eqtr4d |  |-  ( ph -> { <. C , D >. } = ( x e. ( { A , C } \ { A } ) |-> D ) ) | 
						
							| 24 | 17 23 | uneq12d |  |-  ( ph -> ( { <. A , B >. } u. { <. C , D >. } ) = ( ( x e. ( { A , C } i^i { A } ) |-> B ) u. ( x e. ( { A , C } \ { A } ) |-> D ) ) ) | 
						
							| 25 |  | partfun |  |-  ( x e. { A , C } |-> if ( x e. { A } , B , D ) ) = ( ( x e. ( { A , C } i^i { A } ) |-> B ) u. ( x e. ( { A , C } \ { A } ) |-> D ) ) | 
						
							| 26 | 24 25 | eqtr4di |  |-  ( ph -> ( { <. A , B >. } u. { <. C , D >. } ) = ( x e. { A , C } |-> if ( x e. { A } , B , D ) ) ) | 
						
							| 27 |  | elsn2g |  |-  ( A e. V -> ( x e. { A } <-> x = A ) ) | 
						
							| 28 | 1 27 | syl |  |-  ( ph -> ( x e. { A } <-> x = A ) ) | 
						
							| 29 | 28 | ifbid |  |-  ( ph -> if ( x e. { A } , B , D ) = if ( x = A , B , D ) ) | 
						
							| 30 | 29 | mpteq2dv |  |-  ( ph -> ( x e. { A , C } |-> if ( x e. { A } , B , D ) ) = ( x e. { A , C } |-> if ( x = A , B , D ) ) ) | 
						
							| 31 | 26 30 | eqtrd |  |-  ( ph -> ( { <. A , B >. } u. { <. C , D >. } ) = ( x e. { A , C } |-> if ( x = A , B , D ) ) ) | 
						
							| 32 | 6 31 | eqtrid |  |-  ( ph -> { <. A , B >. , <. C , D >. } = ( x e. { A , C } |-> if ( x = A , B , D ) ) ) |