Step |
Hyp |
Ref |
Expression |
1 |
|
cycpm2.c |
|- C = ( toCyc ` D ) |
2 |
|
cycpm2.d |
|- ( ph -> D e. V ) |
3 |
|
cycpm2.i |
|- ( ph -> I e. D ) |
4 |
|
cycpm2.j |
|- ( ph -> J e. D ) |
5 |
|
cycpm2.1 |
|- ( ph -> I =/= J ) |
6 |
|
cycpm2tr.t |
|- T = ( pmTrsp ` D ) |
7 |
|
partfun |
|- ( x e. D |-> if ( x e. { I , J } , U. ( { I , J } \ { x } ) , x ) ) = ( ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) u. ( x e. ( D \ { I , J } ) |-> x ) ) |
8 |
7
|
a1i |
|- ( ph -> ( x e. D |-> if ( x e. { I , J } , U. ( { I , J } \ { x } ) , x ) ) = ( ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) u. ( x e. ( D \ { I , J } ) |-> x ) ) ) |
9 |
|
cshw1s2 |
|- ( ( I e. D /\ J e. D ) -> ( <" I J "> cyclShift 1 ) = <" J I "> ) |
10 |
3 4 9
|
syl2anc |
|- ( ph -> ( <" I J "> cyclShift 1 ) = <" J I "> ) |
11 |
10
|
coeq1d |
|- ( ph -> ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) = ( <" J I "> o. `' <" I J "> ) ) |
12 |
|
0nn0 |
|- 0 e. NN0 |
13 |
12
|
a1i |
|- ( ph -> 0 e. NN0 ) |
14 |
|
1nn0 |
|- 1 e. NN0 |
15 |
14
|
a1i |
|- ( ph -> 1 e. NN0 ) |
16 |
|
0ne1 |
|- 0 =/= 1 |
17 |
16
|
a1i |
|- ( ph -> 0 =/= 1 ) |
18 |
13 4 15 3 17 3 4 5
|
coprprop |
|- ( ph -> ( { <. 0 , J >. , <. 1 , I >. } o. { <. I , 0 >. , <. J , 1 >. } ) = { <. I , J >. , <. J , I >. } ) |
19 |
|
s2prop |
|- ( ( J e. D /\ I e. D ) -> <" J I "> = { <. 0 , J >. , <. 1 , I >. } ) |
20 |
4 3 19
|
syl2anc |
|- ( ph -> <" J I "> = { <. 0 , J >. , <. 1 , I >. } ) |
21 |
|
s2prop |
|- ( ( I e. D /\ J e. D ) -> <" I J "> = { <. 0 , I >. , <. 1 , J >. } ) |
22 |
3 4 21
|
syl2anc |
|- ( ph -> <" I J "> = { <. 0 , I >. , <. 1 , J >. } ) |
23 |
22
|
cnveqd |
|- ( ph -> `' <" I J "> = `' { <. 0 , I >. , <. 1 , J >. } ) |
24 |
|
cnvprop |
|- ( ( ( 0 e. NN0 /\ I e. D ) /\ ( 1 e. NN0 /\ J e. D ) ) -> `' { <. 0 , I >. , <. 1 , J >. } = { <. I , 0 >. , <. J , 1 >. } ) |
25 |
13 3 15 4 24
|
syl22anc |
|- ( ph -> `' { <. 0 , I >. , <. 1 , J >. } = { <. I , 0 >. , <. J , 1 >. } ) |
26 |
23 25
|
eqtrd |
|- ( ph -> `' <" I J "> = { <. I , 0 >. , <. J , 1 >. } ) |
27 |
20 26
|
coeq12d |
|- ( ph -> ( <" J I "> o. `' <" I J "> ) = ( { <. 0 , J >. , <. 1 , I >. } o. { <. I , 0 >. , <. J , 1 >. } ) ) |
28 |
3 4 4 3 5
|
mptprop |
|- ( ph -> { <. I , J >. , <. J , I >. } = ( x e. { I , J } |-> if ( x = I , J , I ) ) ) |
29 |
3 4
|
prssd |
|- ( ph -> { I , J } C_ D ) |
30 |
|
df-ss |
|- ( { I , J } C_ D <-> ( { I , J } i^i D ) = { I , J } ) |
31 |
29 30
|
sylib |
|- ( ph -> ( { I , J } i^i D ) = { I , J } ) |
32 |
|
incom |
|- ( { I , J } i^i D ) = ( D i^i { I , J } ) |
33 |
31 32
|
eqtr3di |
|- ( ph -> { I , J } = ( D i^i { I , J } ) ) |
34 |
|
simpr |
|- ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> x = I ) |
35 |
34
|
sneqd |
|- ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> { x } = { I } ) |
36 |
35
|
difeq2d |
|- ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> ( { I , J } \ { x } ) = ( { I , J } \ { I } ) ) |
37 |
36
|
unieqd |
|- ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> U. ( { I , J } \ { x } ) = U. ( { I , J } \ { I } ) ) |
38 |
|
difprsn1 |
|- ( I =/= J -> ( { I , J } \ { I } ) = { J } ) |
39 |
38
|
unieqd |
|- ( I =/= J -> U. ( { I , J } \ { I } ) = U. { J } ) |
40 |
5 39
|
syl |
|- ( ph -> U. ( { I , J } \ { I } ) = U. { J } ) |
41 |
|
unisng |
|- ( J e. D -> U. { J } = J ) |
42 |
4 41
|
syl |
|- ( ph -> U. { J } = J ) |
43 |
40 42
|
eqtrd |
|- ( ph -> U. ( { I , J } \ { I } ) = J ) |
44 |
43
|
ad2antrr |
|- ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> U. ( { I , J } \ { I } ) = J ) |
45 |
37 44
|
eqtr2d |
|- ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> J = U. ( { I , J } \ { x } ) ) |
46 |
|
vex |
|- x e. _V |
47 |
46
|
elpr |
|- ( x e. { I , J } <-> ( x = I \/ x = J ) ) |
48 |
|
df-or |
|- ( ( x = I \/ x = J ) <-> ( -. x = I -> x = J ) ) |
49 |
47 48
|
sylbb |
|- ( x e. { I , J } -> ( -. x = I -> x = J ) ) |
50 |
49
|
imp |
|- ( ( x e. { I , J } /\ -. x = I ) -> x = J ) |
51 |
50
|
adantll |
|- ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> x = J ) |
52 |
51
|
sneqd |
|- ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> { x } = { J } ) |
53 |
52
|
difeq2d |
|- ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> ( { I , J } \ { x } ) = ( { I , J } \ { J } ) ) |
54 |
53
|
unieqd |
|- ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> U. ( { I , J } \ { x } ) = U. ( { I , J } \ { J } ) ) |
55 |
|
difprsn2 |
|- ( I =/= J -> ( { I , J } \ { J } ) = { I } ) |
56 |
55
|
unieqd |
|- ( I =/= J -> U. ( { I , J } \ { J } ) = U. { I } ) |
57 |
5 56
|
syl |
|- ( ph -> U. ( { I , J } \ { J } ) = U. { I } ) |
58 |
|
unisng |
|- ( I e. D -> U. { I } = I ) |
59 |
3 58
|
syl |
|- ( ph -> U. { I } = I ) |
60 |
57 59
|
eqtrd |
|- ( ph -> U. ( { I , J } \ { J } ) = I ) |
61 |
60
|
ad2antrr |
|- ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> U. ( { I , J } \ { J } ) = I ) |
62 |
54 61
|
eqtr2d |
|- ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> I = U. ( { I , J } \ { x } ) ) |
63 |
45 62
|
ifeqda |
|- ( ( ph /\ x e. { I , J } ) -> if ( x = I , J , I ) = U. ( { I , J } \ { x } ) ) |
64 |
33 63
|
mpteq12dva |
|- ( ph -> ( x e. { I , J } |-> if ( x = I , J , I ) ) = ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) ) |
65 |
28 64
|
eqtr2d |
|- ( ph -> ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) = { <. I , J >. , <. J , I >. } ) |
66 |
18 27 65
|
3eqtr4d |
|- ( ph -> ( <" J I "> o. `' <" I J "> ) = ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) ) |
67 |
11 66
|
eqtrd |
|- ( ph -> ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) = ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) ) |
68 |
3 4
|
s2rn |
|- ( ph -> ran <" I J "> = { I , J } ) |
69 |
68
|
difeq2d |
|- ( ph -> ( D \ ran <" I J "> ) = ( D \ { I , J } ) ) |
70 |
69
|
reseq2d |
|- ( ph -> ( _I |` ( D \ ran <" I J "> ) ) = ( _I |` ( D \ { I , J } ) ) ) |
71 |
|
mptresid |
|- ( _I |` ( D \ { I , J } ) ) = ( x e. ( D \ { I , J } ) |-> x ) |
72 |
70 71
|
eqtrdi |
|- ( ph -> ( _I |` ( D \ ran <" I J "> ) ) = ( x e. ( D \ { I , J } ) |-> x ) ) |
73 |
67 72
|
uneq12d |
|- ( ph -> ( ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) u. ( _I |` ( D \ ran <" I J "> ) ) ) = ( ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) u. ( x e. ( D \ { I , J } ) |-> x ) ) ) |
74 |
|
uncom |
|- ( ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) u. ( _I |` ( D \ ran <" I J "> ) ) ) = ( ( _I |` ( D \ ran <" I J "> ) ) u. ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) ) |
75 |
74
|
a1i |
|- ( ph -> ( ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) u. ( _I |` ( D \ ran <" I J "> ) ) ) = ( ( _I |` ( D \ ran <" I J "> ) ) u. ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) ) ) |
76 |
8 73 75
|
3eqtr2rd |
|- ( ph -> ( ( _I |` ( D \ ran <" I J "> ) ) u. ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) ) = ( x e. D |-> if ( x e. { I , J } , U. ( { I , J } \ { x } ) , x ) ) ) |
77 |
3 4
|
s2cld |
|- ( ph -> <" I J "> e. Word D ) |
78 |
3 4 5
|
s2f1 |
|- ( ph -> <" I J "> : dom <" I J "> -1-1-> D ) |
79 |
1 2 77 78
|
tocycfv |
|- ( ph -> ( C ` <" I J "> ) = ( ( _I |` ( D \ ran <" I J "> ) ) u. ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) ) ) |
80 |
|
pr2nelem |
|- ( ( I e. D /\ J e. D /\ I =/= J ) -> { I , J } ~~ 2o ) |
81 |
3 4 5 80
|
syl3anc |
|- ( ph -> { I , J } ~~ 2o ) |
82 |
6
|
pmtrval |
|- ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> ( T ` { I , J } ) = ( x e. D |-> if ( x e. { I , J } , U. ( { I , J } \ { x } ) , x ) ) ) |
83 |
2 29 81 82
|
syl3anc |
|- ( ph -> ( T ` { I , J } ) = ( x e. D |-> if ( x e. { I , J } , U. ( { I , J } \ { x } ) , x ) ) ) |
84 |
76 79 83
|
3eqtr4d |
|- ( ph -> ( C ` <" I J "> ) = ( T ` { I , J } ) ) |