| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpm2.c |  |-  C = ( toCyc ` D ) | 
						
							| 2 |  | cycpm2.d |  |-  ( ph -> D e. V ) | 
						
							| 3 |  | cycpm2.i |  |-  ( ph -> I e. D ) | 
						
							| 4 |  | cycpm2.j |  |-  ( ph -> J e. D ) | 
						
							| 5 |  | cycpm2.1 |  |-  ( ph -> I =/= J ) | 
						
							| 6 |  | cycpm2tr.t |  |-  T = ( pmTrsp ` D ) | 
						
							| 7 |  | partfun |  |-  ( x e. D |-> if ( x e. { I , J } , U. ( { I , J } \ { x } ) , x ) ) = ( ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) u. ( x e. ( D \ { I , J } ) |-> x ) ) | 
						
							| 8 | 7 | a1i |  |-  ( ph -> ( x e. D |-> if ( x e. { I , J } , U. ( { I , J } \ { x } ) , x ) ) = ( ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) u. ( x e. ( D \ { I , J } ) |-> x ) ) ) | 
						
							| 9 |  | cshw1s2 |  |-  ( ( I e. D /\ J e. D ) -> ( <" I J "> cyclShift 1 ) = <" J I "> ) | 
						
							| 10 | 3 4 9 | syl2anc |  |-  ( ph -> ( <" I J "> cyclShift 1 ) = <" J I "> ) | 
						
							| 11 | 10 | coeq1d |  |-  ( ph -> ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) = ( <" J I "> o. `' <" I J "> ) ) | 
						
							| 12 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 13 | 12 | a1i |  |-  ( ph -> 0 e. NN0 ) | 
						
							| 14 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 15 | 14 | a1i |  |-  ( ph -> 1 e. NN0 ) | 
						
							| 16 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 17 | 16 | a1i |  |-  ( ph -> 0 =/= 1 ) | 
						
							| 18 | 13 4 15 3 17 3 4 5 | coprprop |  |-  ( ph -> ( { <. 0 , J >. , <. 1 , I >. } o. { <. I , 0 >. , <. J , 1 >. } ) = { <. I , J >. , <. J , I >. } ) | 
						
							| 19 |  | s2prop |  |-  ( ( J e. D /\ I e. D ) -> <" J I "> = { <. 0 , J >. , <. 1 , I >. } ) | 
						
							| 20 | 4 3 19 | syl2anc |  |-  ( ph -> <" J I "> = { <. 0 , J >. , <. 1 , I >. } ) | 
						
							| 21 |  | s2prop |  |-  ( ( I e. D /\ J e. D ) -> <" I J "> = { <. 0 , I >. , <. 1 , J >. } ) | 
						
							| 22 | 3 4 21 | syl2anc |  |-  ( ph -> <" I J "> = { <. 0 , I >. , <. 1 , J >. } ) | 
						
							| 23 | 22 | cnveqd |  |-  ( ph -> `' <" I J "> = `' { <. 0 , I >. , <. 1 , J >. } ) | 
						
							| 24 |  | cnvprop |  |-  ( ( ( 0 e. NN0 /\ I e. D ) /\ ( 1 e. NN0 /\ J e. D ) ) -> `' { <. 0 , I >. , <. 1 , J >. } = { <. I , 0 >. , <. J , 1 >. } ) | 
						
							| 25 | 13 3 15 4 24 | syl22anc |  |-  ( ph -> `' { <. 0 , I >. , <. 1 , J >. } = { <. I , 0 >. , <. J , 1 >. } ) | 
						
							| 26 | 23 25 | eqtrd |  |-  ( ph -> `' <" I J "> = { <. I , 0 >. , <. J , 1 >. } ) | 
						
							| 27 | 20 26 | coeq12d |  |-  ( ph -> ( <" J I "> o. `' <" I J "> ) = ( { <. 0 , J >. , <. 1 , I >. } o. { <. I , 0 >. , <. J , 1 >. } ) ) | 
						
							| 28 | 3 4 4 3 5 | mptprop |  |-  ( ph -> { <. I , J >. , <. J , I >. } = ( x e. { I , J } |-> if ( x = I , J , I ) ) ) | 
						
							| 29 | 3 4 | prssd |  |-  ( ph -> { I , J } C_ D ) | 
						
							| 30 |  | dfss2 |  |-  ( { I , J } C_ D <-> ( { I , J } i^i D ) = { I , J } ) | 
						
							| 31 | 29 30 | sylib |  |-  ( ph -> ( { I , J } i^i D ) = { I , J } ) | 
						
							| 32 |  | incom |  |-  ( { I , J } i^i D ) = ( D i^i { I , J } ) | 
						
							| 33 | 31 32 | eqtr3di |  |-  ( ph -> { I , J } = ( D i^i { I , J } ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> x = I ) | 
						
							| 35 | 34 | sneqd |  |-  ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> { x } = { I } ) | 
						
							| 36 | 35 | difeq2d |  |-  ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> ( { I , J } \ { x } ) = ( { I , J } \ { I } ) ) | 
						
							| 37 | 36 | unieqd |  |-  ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> U. ( { I , J } \ { x } ) = U. ( { I , J } \ { I } ) ) | 
						
							| 38 |  | difprsn1 |  |-  ( I =/= J -> ( { I , J } \ { I } ) = { J } ) | 
						
							| 39 | 38 | unieqd |  |-  ( I =/= J -> U. ( { I , J } \ { I } ) = U. { J } ) | 
						
							| 40 | 5 39 | syl |  |-  ( ph -> U. ( { I , J } \ { I } ) = U. { J } ) | 
						
							| 41 |  | unisng |  |-  ( J e. D -> U. { J } = J ) | 
						
							| 42 | 4 41 | syl |  |-  ( ph -> U. { J } = J ) | 
						
							| 43 | 40 42 | eqtrd |  |-  ( ph -> U. ( { I , J } \ { I } ) = J ) | 
						
							| 44 | 43 | ad2antrr |  |-  ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> U. ( { I , J } \ { I } ) = J ) | 
						
							| 45 | 37 44 | eqtr2d |  |-  ( ( ( ph /\ x e. { I , J } ) /\ x = I ) -> J = U. ( { I , J } \ { x } ) ) | 
						
							| 46 |  | vex |  |-  x e. _V | 
						
							| 47 | 46 | elpr |  |-  ( x e. { I , J } <-> ( x = I \/ x = J ) ) | 
						
							| 48 |  | df-or |  |-  ( ( x = I \/ x = J ) <-> ( -. x = I -> x = J ) ) | 
						
							| 49 | 47 48 | sylbb |  |-  ( x e. { I , J } -> ( -. x = I -> x = J ) ) | 
						
							| 50 | 49 | imp |  |-  ( ( x e. { I , J } /\ -. x = I ) -> x = J ) | 
						
							| 51 | 50 | adantll |  |-  ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> x = J ) | 
						
							| 52 | 51 | sneqd |  |-  ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> { x } = { J } ) | 
						
							| 53 | 52 | difeq2d |  |-  ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> ( { I , J } \ { x } ) = ( { I , J } \ { J } ) ) | 
						
							| 54 | 53 | unieqd |  |-  ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> U. ( { I , J } \ { x } ) = U. ( { I , J } \ { J } ) ) | 
						
							| 55 |  | difprsn2 |  |-  ( I =/= J -> ( { I , J } \ { J } ) = { I } ) | 
						
							| 56 | 55 | unieqd |  |-  ( I =/= J -> U. ( { I , J } \ { J } ) = U. { I } ) | 
						
							| 57 | 5 56 | syl |  |-  ( ph -> U. ( { I , J } \ { J } ) = U. { I } ) | 
						
							| 58 |  | unisng |  |-  ( I e. D -> U. { I } = I ) | 
						
							| 59 | 3 58 | syl |  |-  ( ph -> U. { I } = I ) | 
						
							| 60 | 57 59 | eqtrd |  |-  ( ph -> U. ( { I , J } \ { J } ) = I ) | 
						
							| 61 | 60 | ad2antrr |  |-  ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> U. ( { I , J } \ { J } ) = I ) | 
						
							| 62 | 54 61 | eqtr2d |  |-  ( ( ( ph /\ x e. { I , J } ) /\ -. x = I ) -> I = U. ( { I , J } \ { x } ) ) | 
						
							| 63 | 45 62 | ifeqda |  |-  ( ( ph /\ x e. { I , J } ) -> if ( x = I , J , I ) = U. ( { I , J } \ { x } ) ) | 
						
							| 64 | 33 63 | mpteq12dva |  |-  ( ph -> ( x e. { I , J } |-> if ( x = I , J , I ) ) = ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) ) | 
						
							| 65 | 28 64 | eqtr2d |  |-  ( ph -> ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) = { <. I , J >. , <. J , I >. } ) | 
						
							| 66 | 18 27 65 | 3eqtr4d |  |-  ( ph -> ( <" J I "> o. `' <" I J "> ) = ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) ) | 
						
							| 67 | 11 66 | eqtrd |  |-  ( ph -> ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) = ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) ) | 
						
							| 68 | 3 4 | s2rn |  |-  ( ph -> ran <" I J "> = { I , J } ) | 
						
							| 69 | 68 | difeq2d |  |-  ( ph -> ( D \ ran <" I J "> ) = ( D \ { I , J } ) ) | 
						
							| 70 | 69 | reseq2d |  |-  ( ph -> ( _I |` ( D \ ran <" I J "> ) ) = ( _I |` ( D \ { I , J } ) ) ) | 
						
							| 71 |  | mptresid |  |-  ( _I |` ( D \ { I , J } ) ) = ( x e. ( D \ { I , J } ) |-> x ) | 
						
							| 72 | 70 71 | eqtrdi |  |-  ( ph -> ( _I |` ( D \ ran <" I J "> ) ) = ( x e. ( D \ { I , J } ) |-> x ) ) | 
						
							| 73 | 67 72 | uneq12d |  |-  ( ph -> ( ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) u. ( _I |` ( D \ ran <" I J "> ) ) ) = ( ( x e. ( D i^i { I , J } ) |-> U. ( { I , J } \ { x } ) ) u. ( x e. ( D \ { I , J } ) |-> x ) ) ) | 
						
							| 74 |  | uncom |  |-  ( ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) u. ( _I |` ( D \ ran <" I J "> ) ) ) = ( ( _I |` ( D \ ran <" I J "> ) ) u. ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) ) | 
						
							| 75 | 74 | a1i |  |-  ( ph -> ( ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) u. ( _I |` ( D \ ran <" I J "> ) ) ) = ( ( _I |` ( D \ ran <" I J "> ) ) u. ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) ) ) | 
						
							| 76 | 8 73 75 | 3eqtr2rd |  |-  ( ph -> ( ( _I |` ( D \ ran <" I J "> ) ) u. ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) ) = ( x e. D |-> if ( x e. { I , J } , U. ( { I , J } \ { x } ) , x ) ) ) | 
						
							| 77 | 3 4 | s2cld |  |-  ( ph -> <" I J "> e. Word D ) | 
						
							| 78 | 3 4 5 | s2f1 |  |-  ( ph -> <" I J "> : dom <" I J "> -1-1-> D ) | 
						
							| 79 | 1 2 77 78 | tocycfv |  |-  ( ph -> ( C ` <" I J "> ) = ( ( _I |` ( D \ ran <" I J "> ) ) u. ( ( <" I J "> cyclShift 1 ) o. `' <" I J "> ) ) ) | 
						
							| 80 |  | enpr2 |  |-  ( ( I e. D /\ J e. D /\ I =/= J ) -> { I , J } ~~ 2o ) | 
						
							| 81 | 3 4 5 80 | syl3anc |  |-  ( ph -> { I , J } ~~ 2o ) | 
						
							| 82 | 6 | pmtrval |  |-  ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> ( T ` { I , J } ) = ( x e. D |-> if ( x e. { I , J } , U. ( { I , J } \ { x } ) , x ) ) ) | 
						
							| 83 | 2 29 81 82 | syl3anc |  |-  ( ph -> ( T ` { I , J } ) = ( x e. D |-> if ( x e. { I , J } , U. ( { I , J } \ { x } ) , x ) ) ) | 
						
							| 84 | 76 79 83 | 3eqtr4d |  |-  ( ph -> ( C ` <" I J "> ) = ( T ` { I , J } ) ) |