Step |
Hyp |
Ref |
Expression |
1 |
|
tocycval.1 |
|- C = ( toCyc ` D ) |
2 |
|
tocycfv.d |
|- ( ph -> D e. V ) |
3 |
|
tocycfv.w |
|- ( ph -> W e. Word D ) |
4 |
|
tocycfv.1 |
|- ( ph -> W : dom W -1-1-> D ) |
5 |
1
|
tocycval |
|- ( D e. V -> C = ( w e. { u e. Word D | u : dom u -1-1-> D } |-> ( ( _I |` ( D \ ran w ) ) u. ( ( w cyclShift 1 ) o. `' w ) ) ) ) |
6 |
2 5
|
syl |
|- ( ph -> C = ( w e. { u e. Word D | u : dom u -1-1-> D } |-> ( ( _I |` ( D \ ran w ) ) u. ( ( w cyclShift 1 ) o. `' w ) ) ) ) |
7 |
|
simpr |
|- ( ( ph /\ w = W ) -> w = W ) |
8 |
7
|
rneqd |
|- ( ( ph /\ w = W ) -> ran w = ran W ) |
9 |
8
|
difeq2d |
|- ( ( ph /\ w = W ) -> ( D \ ran w ) = ( D \ ran W ) ) |
10 |
9
|
reseq2d |
|- ( ( ph /\ w = W ) -> ( _I |` ( D \ ran w ) ) = ( _I |` ( D \ ran W ) ) ) |
11 |
7
|
oveq1d |
|- ( ( ph /\ w = W ) -> ( w cyclShift 1 ) = ( W cyclShift 1 ) ) |
12 |
7
|
cnveqd |
|- ( ( ph /\ w = W ) -> `' w = `' W ) |
13 |
11 12
|
coeq12d |
|- ( ( ph /\ w = W ) -> ( ( w cyclShift 1 ) o. `' w ) = ( ( W cyclShift 1 ) o. `' W ) ) |
14 |
10 13
|
uneq12d |
|- ( ( ph /\ w = W ) -> ( ( _I |` ( D \ ran w ) ) u. ( ( w cyclShift 1 ) o. `' w ) ) = ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) ) |
15 |
|
id |
|- ( u = W -> u = W ) |
16 |
|
dmeq |
|- ( u = W -> dom u = dom W ) |
17 |
|
eqidd |
|- ( u = W -> D = D ) |
18 |
15 16 17
|
f1eq123d |
|- ( u = W -> ( u : dom u -1-1-> D <-> W : dom W -1-1-> D ) ) |
19 |
18 3 4
|
elrabd |
|- ( ph -> W e. { u e. Word D | u : dom u -1-1-> D } ) |
20 |
2
|
difexd |
|- ( ph -> ( D \ ran W ) e. _V ) |
21 |
20
|
resiexd |
|- ( ph -> ( _I |` ( D \ ran W ) ) e. _V ) |
22 |
|
cshwcl |
|- ( W e. Word D -> ( W cyclShift 1 ) e. Word D ) |
23 |
3 22
|
syl |
|- ( ph -> ( W cyclShift 1 ) e. Word D ) |
24 |
|
cnvexg |
|- ( W e. Word D -> `' W e. _V ) |
25 |
3 24
|
syl |
|- ( ph -> `' W e. _V ) |
26 |
|
coexg |
|- ( ( ( W cyclShift 1 ) e. Word D /\ `' W e. _V ) -> ( ( W cyclShift 1 ) o. `' W ) e. _V ) |
27 |
23 25 26
|
syl2anc |
|- ( ph -> ( ( W cyclShift 1 ) o. `' W ) e. _V ) |
28 |
|
unexg |
|- ( ( ( _I |` ( D \ ran W ) ) e. _V /\ ( ( W cyclShift 1 ) o. `' W ) e. _V ) -> ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) e. _V ) |
29 |
21 27 28
|
syl2anc |
|- ( ph -> ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) e. _V ) |
30 |
6 14 19 29
|
fvmptd |
|- ( ph -> ( C ` W ) = ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) ) |