Metamath Proof Explorer


Theorem tocycfv

Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023)

Ref Expression
Hypotheses tocycval.1 C = toCyc D
tocycfv.d φ D V
tocycfv.w φ W Word D
tocycfv.1 φ W : dom W 1-1 D
Assertion tocycfv φ C W = I D ran W W cyclShift 1 W -1

Proof

Step Hyp Ref Expression
1 tocycval.1 C = toCyc D
2 tocycfv.d φ D V
3 tocycfv.w φ W Word D
4 tocycfv.1 φ W : dom W 1-1 D
5 1 tocycval D V C = w u Word D | u : dom u 1-1 D I D ran w w cyclShift 1 w -1
6 2 5 syl φ C = w u Word D | u : dom u 1-1 D I D ran w w cyclShift 1 w -1
7 simpr φ w = W w = W
8 7 rneqd φ w = W ran w = ran W
9 8 difeq2d φ w = W D ran w = D ran W
10 9 reseq2d φ w = W I D ran w = I D ran W
11 7 oveq1d φ w = W w cyclShift 1 = W cyclShift 1
12 7 cnveqd φ w = W w -1 = W -1
13 11 12 coeq12d φ w = W w cyclShift 1 w -1 = W cyclShift 1 W -1
14 10 13 uneq12d φ w = W I D ran w w cyclShift 1 w -1 = I D ran W W cyclShift 1 W -1
15 id u = W u = W
16 dmeq u = W dom u = dom W
17 eqidd u = W D = D
18 15 16 17 f1eq123d u = W u : dom u 1-1 D W : dom W 1-1 D
19 18 3 4 elrabd φ W u Word D | u : dom u 1-1 D
20 2 difexd φ D ran W V
21 20 resiexd φ I D ran W V
22 cshwcl W Word D W cyclShift 1 Word D
23 3 22 syl φ W cyclShift 1 Word D
24 cnvexg W Word D W -1 V
25 3 24 syl φ W -1 V
26 coexg W cyclShift 1 Word D W -1 V W cyclShift 1 W -1 V
27 23 25 26 syl2anc φ W cyclShift 1 W -1 V
28 unexg I D ran W V W cyclShift 1 W -1 V I D ran W W cyclShift 1 W -1 V
29 21 27 28 syl2anc φ I D ran W W cyclShift 1 W -1 V
30 6 14 19 29 fvmptd φ C W = I D ran W W cyclShift 1 W -1