Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Permutation cycles
tocycval
Next ⟩
tocycfv
Metamath Proof Explorer
Ascii
Unicode
Theorem
tocycval
Description:
Value of the cycle builder.
(Contributed by
Thierry Arnoux
, 22-Sep-2023)
Ref
Expression
Hypothesis
tocycval.1
⊢
C
=
toCyc
⁡
D
Assertion
tocycval
⊢
D
∈
V
→
C
=
w
∈
u
∈
Word
D
|
u
:
dom
⁡
u
⟶
1-1
D
⟼
I
↾
D
∖
ran
⁡
w
∪
w
cyclShift
1
∘
w
-1
Proof
Step
Hyp
Ref
Expression
1
tocycval.1
⊢
C
=
toCyc
⁡
D
2
df-tocyc
⊢
toCyc
=
d
∈
V
⟼
w
∈
u
∈
Word
d
|
u
:
dom
⁡
u
⟶
1-1
d
⟼
I
↾
d
∖
ran
⁡
w
∪
w
cyclShift
1
∘
w
-1
3
wrdeq
⊢
d
=
D
→
Word
d
=
Word
D
4
f1eq3
⊢
d
=
D
→
u
:
dom
⁡
u
⟶
1-1
d
↔
u
:
dom
⁡
u
⟶
1-1
D
5
3
4
rabeqbidv
⊢
d
=
D
→
u
∈
Word
d
|
u
:
dom
⁡
u
⟶
1-1
d
=
u
∈
Word
D
|
u
:
dom
⁡
u
⟶
1-1
D
6
difeq1
⊢
d
=
D
→
d
∖
ran
⁡
w
=
D
∖
ran
⁡
w
7
6
reseq2d
⊢
d
=
D
→
I
↾
d
∖
ran
⁡
w
=
I
↾
D
∖
ran
⁡
w
8
7
uneq1d
⊢
d
=
D
→
I
↾
d
∖
ran
⁡
w
∪
w
cyclShift
1
∘
w
-1
=
I
↾
D
∖
ran
⁡
w
∪
w
cyclShift
1
∘
w
-1
9
5
8
mpteq12dv
⊢
d
=
D
→
w
∈
u
∈
Word
d
|
u
:
dom
⁡
u
⟶
1-1
d
⟼
I
↾
d
∖
ran
⁡
w
∪
w
cyclShift
1
∘
w
-1
=
w
∈
u
∈
Word
D
|
u
:
dom
⁡
u
⟶
1-1
D
⟼
I
↾
D
∖
ran
⁡
w
∪
w
cyclShift
1
∘
w
-1
10
elex
⊢
D
∈
V
→
D
∈
V
11
eqid
⊢
u
∈
Word
D
|
u
:
dom
⁡
u
⟶
1-1
D
=
u
∈
Word
D
|
u
:
dom
⁡
u
⟶
1-1
D
12
wrdexg
⊢
D
∈
V
→
Word
D
∈
V
13
11
12
rabexd
⊢
D
∈
V
→
u
∈
Word
D
|
u
:
dom
⁡
u
⟶
1-1
D
∈
V
14
13
mptexd
⊢
D
∈
V
→
w
∈
u
∈
Word
D
|
u
:
dom
⁡
u
⟶
1-1
D
⟼
I
↾
D
∖
ran
⁡
w
∪
w
cyclShift
1
∘
w
-1
∈
V
15
2
9
10
14
fvmptd3
⊢
D
∈
V
→
toCyc
⁡
D
=
w
∈
u
∈
Word
D
|
u
:
dom
⁡
u
⟶
1-1
D
⟼
I
↾
D
∖
ran
⁡
w
∪
w
cyclShift
1
∘
w
-1
16
1
15
syl5eq
⊢
D
∈
V
→
C
=
w
∈
u
∈
Word
D
|
u
:
dom
⁡
u
⟶
1-1
D
⟼
I
↾
D
∖
ran
⁡
w
∪
w
cyclShift
1
∘
w
-1