| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tocycval.1 |
|- C = ( toCyc ` D ) |
| 2 |
|
df-tocyc |
|- toCyc = ( d e. _V |-> ( w e. { u e. Word d | u : dom u -1-1-> d } |-> ( ( _I |` ( d \ ran w ) ) u. ( ( w cyclShift 1 ) o. `' w ) ) ) ) |
| 3 |
|
wrdeq |
|- ( d = D -> Word d = Word D ) |
| 4 |
|
f1eq3 |
|- ( d = D -> ( u : dom u -1-1-> d <-> u : dom u -1-1-> D ) ) |
| 5 |
3 4
|
rabeqbidv |
|- ( d = D -> { u e. Word d | u : dom u -1-1-> d } = { u e. Word D | u : dom u -1-1-> D } ) |
| 6 |
|
difeq1 |
|- ( d = D -> ( d \ ran w ) = ( D \ ran w ) ) |
| 7 |
6
|
reseq2d |
|- ( d = D -> ( _I |` ( d \ ran w ) ) = ( _I |` ( D \ ran w ) ) ) |
| 8 |
7
|
uneq1d |
|- ( d = D -> ( ( _I |` ( d \ ran w ) ) u. ( ( w cyclShift 1 ) o. `' w ) ) = ( ( _I |` ( D \ ran w ) ) u. ( ( w cyclShift 1 ) o. `' w ) ) ) |
| 9 |
5 8
|
mpteq12dv |
|- ( d = D -> ( w e. { u e. Word d | u : dom u -1-1-> d } |-> ( ( _I |` ( d \ ran w ) ) u. ( ( w cyclShift 1 ) o. `' w ) ) ) = ( w e. { u e. Word D | u : dom u -1-1-> D } |-> ( ( _I |` ( D \ ran w ) ) u. ( ( w cyclShift 1 ) o. `' w ) ) ) ) |
| 10 |
|
elex |
|- ( D e. V -> D e. _V ) |
| 11 |
|
eqid |
|- { u e. Word D | u : dom u -1-1-> D } = { u e. Word D | u : dom u -1-1-> D } |
| 12 |
|
wrdexg |
|- ( D e. V -> Word D e. _V ) |
| 13 |
11 12
|
rabexd |
|- ( D e. V -> { u e. Word D | u : dom u -1-1-> D } e. _V ) |
| 14 |
13
|
mptexd |
|- ( D e. V -> ( w e. { u e. Word D | u : dom u -1-1-> D } |-> ( ( _I |` ( D \ ran w ) ) u. ( ( w cyclShift 1 ) o. `' w ) ) ) e. _V ) |
| 15 |
2 9 10 14
|
fvmptd3 |
|- ( D e. V -> ( toCyc ` D ) = ( w e. { u e. Word D | u : dom u -1-1-> D } |-> ( ( _I |` ( D \ ran w ) ) u. ( ( w cyclShift 1 ) o. `' w ) ) ) ) |
| 16 |
1 15
|
eqtrid |
|- ( D e. V -> C = ( w e. { u e. Word D | u : dom u -1-1-> D } |-> ( ( _I |` ( D \ ran w ) ) u. ( ( w cyclShift 1 ) o. `' w ) ) ) ) |