Step |
Hyp |
Ref |
Expression |
1 |
|
tocycval.1 |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
2 |
|
tocycfv.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
3 |
|
tocycfv.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
4 |
|
tocycfv.1 |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
5 |
1
|
tocycval |
⊢ ( 𝐷 ∈ 𝑉 → 𝐶 = ( 𝑤 ∈ { 𝑢 ∈ Word 𝐷 ∣ 𝑢 : dom 𝑢 –1-1→ 𝐷 } ↦ ( ( I ↾ ( 𝐷 ∖ ran 𝑤 ) ) ∪ ( ( 𝑤 cyclShift 1 ) ∘ ◡ 𝑤 ) ) ) ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝐶 = ( 𝑤 ∈ { 𝑢 ∈ Word 𝐷 ∣ 𝑢 : dom 𝑢 –1-1→ 𝐷 } ↦ ( ( I ↾ ( 𝐷 ∖ ran 𝑤 ) ) ∪ ( ( 𝑤 cyclShift 1 ) ∘ ◡ 𝑤 ) ) ) ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝑊 ) → 𝑤 = 𝑊 ) |
8 |
7
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝑊 ) → ran 𝑤 = ran 𝑊 ) |
9 |
8
|
difeq2d |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝑊 ) → ( 𝐷 ∖ ran 𝑤 ) = ( 𝐷 ∖ ran 𝑊 ) ) |
10 |
9
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝑊 ) → ( I ↾ ( 𝐷 ∖ ran 𝑤 ) ) = ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ) |
11 |
7
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝑊 ) → ( 𝑤 cyclShift 1 ) = ( 𝑊 cyclShift 1 ) ) |
12 |
7
|
cnveqd |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝑊 ) → ◡ 𝑤 = ◡ 𝑊 ) |
13 |
11 12
|
coeq12d |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝑊 ) → ( ( 𝑤 cyclShift 1 ) ∘ ◡ 𝑤 ) = ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) |
14 |
10 13
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝑊 ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑤 ) ) ∪ ( ( 𝑤 cyclShift 1 ) ∘ ◡ 𝑤 ) ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
15 |
|
id |
⊢ ( 𝑢 = 𝑊 → 𝑢 = 𝑊 ) |
16 |
|
dmeq |
⊢ ( 𝑢 = 𝑊 → dom 𝑢 = dom 𝑊 ) |
17 |
|
eqidd |
⊢ ( 𝑢 = 𝑊 → 𝐷 = 𝐷 ) |
18 |
15 16 17
|
f1eq123d |
⊢ ( 𝑢 = 𝑊 → ( 𝑢 : dom 𝑢 –1-1→ 𝐷 ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
19 |
18 3 4
|
elrabd |
⊢ ( 𝜑 → 𝑊 ∈ { 𝑢 ∈ Word 𝐷 ∣ 𝑢 : dom 𝑢 –1-1→ 𝐷 } ) |
20 |
2
|
difexd |
⊢ ( 𝜑 → ( 𝐷 ∖ ran 𝑊 ) ∈ V ) |
21 |
20
|
resiexd |
⊢ ( 𝜑 → ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∈ V ) |
22 |
|
cshwcl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 cyclShift 1 ) ∈ Word 𝐷 ) |
23 |
3 22
|
syl |
⊢ ( 𝜑 → ( 𝑊 cyclShift 1 ) ∈ Word 𝐷 ) |
24 |
|
cnvexg |
⊢ ( 𝑊 ∈ Word 𝐷 → ◡ 𝑊 ∈ V ) |
25 |
3 24
|
syl |
⊢ ( 𝜑 → ◡ 𝑊 ∈ V ) |
26 |
|
coexg |
⊢ ( ( ( 𝑊 cyclShift 1 ) ∈ Word 𝐷 ∧ ◡ 𝑊 ∈ V ) → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∈ V ) |
27 |
23 25 26
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∈ V ) |
28 |
|
unexg |
⊢ ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∈ V ∧ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∈ V ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ∈ V ) |
29 |
21 27 28
|
syl2anc |
⊢ ( 𝜑 → ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ∈ V ) |
30 |
6 14 19 29
|
fvmptd |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑊 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |