| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tocycval.1 |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
| 2 |
|
tocycfv.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 3 |
|
tocycfv.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
| 4 |
|
tocycfv.1 |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
| 5 |
1 2 3 4
|
tocycfv |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑊 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
| 6 |
5
|
reseq1d |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑊 ) ↾ ran 𝑊 ) = ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ↾ ran 𝑊 ) ) |
| 7 |
|
fnresi |
⊢ ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) Fn ( 𝐷 ∖ ran 𝑊 ) |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) Fn ( 𝐷 ∖ ran 𝑊 ) ) |
| 9 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 10 |
|
cshwfn |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ) → ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 11 |
3 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 12 |
|
f1f1orn |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
| 13 |
|
f1ocnv |
⊢ ( 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
| 14 |
|
f1ofn |
⊢ ( ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 → ◡ 𝑊 Fn ran 𝑊 ) |
| 15 |
4 12 13 14
|
4syl |
⊢ ( 𝜑 → ◡ 𝑊 Fn ran 𝑊 ) |
| 16 |
|
dfdm4 |
⊢ dom 𝑊 = ran ◡ 𝑊 |
| 17 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐷 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 18 |
3 17
|
syl |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 19 |
|
ssidd |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 20 |
18 19
|
eqsstrd |
⊢ ( 𝜑 → dom 𝑊 ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 21 |
16 20
|
eqsstrrid |
⊢ ( 𝜑 → ran ◡ 𝑊 ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 22 |
|
fnco |
⊢ ( ( ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ◡ 𝑊 Fn ran 𝑊 ∧ ran ◡ 𝑊 ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) Fn ran 𝑊 ) |
| 23 |
11 15 21 22
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) Fn ran 𝑊 ) |
| 24 |
|
disjdifr |
⊢ ( ( 𝐷 ∖ ran 𝑊 ) ∩ ran 𝑊 ) = ∅ |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → ( ( 𝐷 ∖ ran 𝑊 ) ∩ ran 𝑊 ) = ∅ ) |
| 26 |
|
fnunres2 |
⊢ ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) Fn ( 𝐷 ∖ ran 𝑊 ) ∧ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) Fn ran 𝑊 ∧ ( ( 𝐷 ∖ ran 𝑊 ) ∩ ran 𝑊 ) = ∅ ) → ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ↾ ran 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) |
| 27 |
8 23 25 26
|
syl3anc |
⊢ ( 𝜑 → ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ↾ ran 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) |
| 28 |
6 27
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑊 ) ↾ ran 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) |