Step |
Hyp |
Ref |
Expression |
1 |
|
s2len |
|- ( # ` <" A B "> ) = 2 |
2 |
1
|
oveq2i |
|- ( 1 mod ( # ` <" A B "> ) ) = ( 1 mod 2 ) |
3 |
|
1re |
|- 1 e. RR |
4 |
|
2rp |
|- 2 e. RR+ |
5 |
|
0le1 |
|- 0 <_ 1 |
6 |
|
1lt2 |
|- 1 < 2 |
7 |
|
modid |
|- ( ( ( 1 e. RR /\ 2 e. RR+ ) /\ ( 0 <_ 1 /\ 1 < 2 ) ) -> ( 1 mod 2 ) = 1 ) |
8 |
3 4 5 6 7
|
mp4an |
|- ( 1 mod 2 ) = 1 |
9 |
2 8
|
eqtri |
|- ( 1 mod ( # ` <" A B "> ) ) = 1 |
10 |
9 1
|
opeq12i |
|- <. ( 1 mod ( # ` <" A B "> ) ) , ( # ` <" A B "> ) >. = <. 1 , 2 >. |
11 |
10
|
oveq2i |
|- ( <" A B "> substr <. ( 1 mod ( # ` <" A B "> ) ) , ( # ` <" A B "> ) >. ) = ( <" A B "> substr <. 1 , 2 >. ) |
12 |
|
s2cl |
|- ( ( A e. V /\ B e. V ) -> <" A B "> e. Word V ) |
13 |
|
tpid2g |
|- ( 1 e. RR -> 1 e. { 0 , 1 , 2 } ) |
14 |
3 13
|
ax-mp |
|- 1 e. { 0 , 1 , 2 } |
15 |
|
fz0tp |
|- ( 0 ... 2 ) = { 0 , 1 , 2 } |
16 |
14 15
|
eleqtrri |
|- 1 e. ( 0 ... 2 ) |
17 |
|
tpid3g |
|- ( 2 e. RR+ -> 2 e. { 0 , 1 , 2 } ) |
18 |
4 17
|
ax-mp |
|- 2 e. { 0 , 1 , 2 } |
19 |
18 15
|
eleqtrri |
|- 2 e. ( 0 ... 2 ) |
20 |
1
|
oveq2i |
|- ( 0 ... ( # ` <" A B "> ) ) = ( 0 ... 2 ) |
21 |
19 20
|
eleqtrri |
|- 2 e. ( 0 ... ( # ` <" A B "> ) ) |
22 |
|
swrdval2 |
|- ( ( <" A B "> e. Word V /\ 1 e. ( 0 ... 2 ) /\ 2 e. ( 0 ... ( # ` <" A B "> ) ) ) -> ( <" A B "> substr <. 1 , 2 >. ) = ( i e. ( 0 ..^ ( 2 - 1 ) ) |-> ( <" A B "> ` ( i + 1 ) ) ) ) |
23 |
16 21 22
|
mp3an23 |
|- ( <" A B "> e. Word V -> ( <" A B "> substr <. 1 , 2 >. ) = ( i e. ( 0 ..^ ( 2 - 1 ) ) |-> ( <" A B "> ` ( i + 1 ) ) ) ) |
24 |
12 23
|
syl |
|- ( ( A e. V /\ B e. V ) -> ( <" A B "> substr <. 1 , 2 >. ) = ( i e. ( 0 ..^ ( 2 - 1 ) ) |-> ( <" A B "> ` ( i + 1 ) ) ) ) |
25 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
26 |
25
|
oveq2i |
|- ( 0 ..^ ( 2 - 1 ) ) = ( 0 ..^ 1 ) |
27 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
28 |
26 27
|
eqtri |
|- ( 0 ..^ ( 2 - 1 ) ) = { 0 } |
29 |
28
|
a1i |
|- ( ( A e. V /\ B e. V ) -> ( 0 ..^ ( 2 - 1 ) ) = { 0 } ) |
30 |
|
simpr |
|- ( ( ( A e. V /\ B e. V ) /\ i e. ( 0 ..^ ( 2 - 1 ) ) ) -> i e. ( 0 ..^ ( 2 - 1 ) ) ) |
31 |
30 28
|
eleqtrdi |
|- ( ( ( A e. V /\ B e. V ) /\ i e. ( 0 ..^ ( 2 - 1 ) ) ) -> i e. { 0 } ) |
32 |
|
elsni |
|- ( i e. { 0 } -> i = 0 ) |
33 |
31 32
|
syl |
|- ( ( ( A e. V /\ B e. V ) /\ i e. ( 0 ..^ ( 2 - 1 ) ) ) -> i = 0 ) |
34 |
33
|
oveq1d |
|- ( ( ( A e. V /\ B e. V ) /\ i e. ( 0 ..^ ( 2 - 1 ) ) ) -> ( i + 1 ) = ( 0 + 1 ) ) |
35 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
36 |
34 35
|
eqtrdi |
|- ( ( ( A e. V /\ B e. V ) /\ i e. ( 0 ..^ ( 2 - 1 ) ) ) -> ( i + 1 ) = 1 ) |
37 |
36
|
fveq2d |
|- ( ( ( A e. V /\ B e. V ) /\ i e. ( 0 ..^ ( 2 - 1 ) ) ) -> ( <" A B "> ` ( i + 1 ) ) = ( <" A B "> ` 1 ) ) |
38 |
|
s2fv1 |
|- ( B e. V -> ( <" A B "> ` 1 ) = B ) |
39 |
38
|
ad2antlr |
|- ( ( ( A e. V /\ B e. V ) /\ i e. ( 0 ..^ ( 2 - 1 ) ) ) -> ( <" A B "> ` 1 ) = B ) |
40 |
37 39
|
eqtrd |
|- ( ( ( A e. V /\ B e. V ) /\ i e. ( 0 ..^ ( 2 - 1 ) ) ) -> ( <" A B "> ` ( i + 1 ) ) = B ) |
41 |
29 40
|
mpteq12dva |
|- ( ( A e. V /\ B e. V ) -> ( i e. ( 0 ..^ ( 2 - 1 ) ) |-> ( <" A B "> ` ( i + 1 ) ) ) = ( i e. { 0 } |-> B ) ) |
42 |
|
fconstmpt |
|- ( { 0 } X. { B } ) = ( i e. { 0 } |-> B ) |
43 |
|
0nn0 |
|- 0 e. NN0 |
44 |
|
simpr |
|- ( ( A e. V /\ B e. V ) -> B e. V ) |
45 |
|
xpsng |
|- ( ( 0 e. NN0 /\ B e. V ) -> ( { 0 } X. { B } ) = { <. 0 , B >. } ) |
46 |
43 44 45
|
sylancr |
|- ( ( A e. V /\ B e. V ) -> ( { 0 } X. { B } ) = { <. 0 , B >. } ) |
47 |
|
s1val |
|- ( B e. V -> <" B "> = { <. 0 , B >. } ) |
48 |
47
|
adantl |
|- ( ( A e. V /\ B e. V ) -> <" B "> = { <. 0 , B >. } ) |
49 |
46 48
|
eqtr4d |
|- ( ( A e. V /\ B e. V ) -> ( { 0 } X. { B } ) = <" B "> ) |
50 |
42 49
|
eqtr3id |
|- ( ( A e. V /\ B e. V ) -> ( i e. { 0 } |-> B ) = <" B "> ) |
51 |
24 41 50
|
3eqtrd |
|- ( ( A e. V /\ B e. V ) -> ( <" A B "> substr <. 1 , 2 >. ) = <" B "> ) |
52 |
11 51
|
syl5eq |
|- ( ( A e. V /\ B e. V ) -> ( <" A B "> substr <. ( 1 mod ( # ` <" A B "> ) ) , ( # ` <" A B "> ) >. ) = <" B "> ) |
53 |
9
|
oveq2i |
|- ( <" A B "> prefix ( 1 mod ( # ` <" A B "> ) ) ) = ( <" A B "> prefix 1 ) |
54 |
|
pfx1s2 |
|- ( ( A e. V /\ B e. V ) -> ( <" A B "> prefix 1 ) = <" A "> ) |
55 |
53 54
|
syl5eq |
|- ( ( A e. V /\ B e. V ) -> ( <" A B "> prefix ( 1 mod ( # ` <" A B "> ) ) ) = <" A "> ) |
56 |
52 55
|
oveq12d |
|- ( ( A e. V /\ B e. V ) -> ( ( <" A B "> substr <. ( 1 mod ( # ` <" A B "> ) ) , ( # ` <" A B "> ) >. ) ++ ( <" A B "> prefix ( 1 mod ( # ` <" A B "> ) ) ) ) = ( <" B "> ++ <" A "> ) ) |
57 |
|
1z |
|- 1 e. ZZ |
58 |
|
cshword |
|- ( ( <" A B "> e. Word V /\ 1 e. ZZ ) -> ( <" A B "> cyclShift 1 ) = ( ( <" A B "> substr <. ( 1 mod ( # ` <" A B "> ) ) , ( # ` <" A B "> ) >. ) ++ ( <" A B "> prefix ( 1 mod ( # ` <" A B "> ) ) ) ) ) |
59 |
12 57 58
|
sylancl |
|- ( ( A e. V /\ B e. V ) -> ( <" A B "> cyclShift 1 ) = ( ( <" A B "> substr <. ( 1 mod ( # ` <" A B "> ) ) , ( # ` <" A B "> ) >. ) ++ ( <" A B "> prefix ( 1 mod ( # ` <" A B "> ) ) ) ) ) |
60 |
|
df-s2 |
|- <" B A "> = ( <" B "> ++ <" A "> ) |
61 |
60
|
a1i |
|- ( ( A e. V /\ B e. V ) -> <" B A "> = ( <" B "> ++ <" A "> ) ) |
62 |
56 59 61
|
3eqtr4d |
|- ( ( A e. V /\ B e. V ) -> ( <" A B "> cyclShift 1 ) = <" B A "> ) |