Step |
Hyp |
Ref |
Expression |
1 |
|
elfzoelz |
|- ( i e. ( 0 ..^ ( # ` W ) ) -> i e. ZZ ) |
2 |
1
|
3ad2ant3 |
|- ( ( W e. Word V /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ZZ ) |
3 |
|
simp2 |
|- ( ( W e. Word V /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> N e. ZZ ) |
4 |
2 3
|
zsubcld |
|- ( ( W e. Word V /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( i - N ) e. ZZ ) |
5 |
|
elfzo0 |
|- ( i e. ( 0 ..^ ( # ` W ) ) <-> ( i e. NN0 /\ ( # ` W ) e. NN /\ i < ( # ` W ) ) ) |
6 |
5
|
simp2bi |
|- ( i e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. NN ) |
7 |
6
|
3ad2ant3 |
|- ( ( W e. Word V /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. NN ) |
8 |
|
zmodfzo |
|- ( ( ( i - N ) e. ZZ /\ ( # ` W ) e. NN ) -> ( ( i - N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
9 |
4 7 8
|
syl2anc |
|- ( ( W e. Word V /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i - N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
10 |
9
|
3expa |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i - N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
11 |
|
elfzoelz |
|- ( j e. ( 0 ..^ ( # ` W ) ) -> j e. ZZ ) |
12 |
11
|
adantl |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> j e. ZZ ) |
13 |
|
simplr |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> N e. ZZ ) |
14 |
12 13
|
zaddcld |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> ( j + N ) e. ZZ ) |
15 |
|
elfzo0 |
|- ( j e. ( 0 ..^ ( # ` W ) ) <-> ( j e. NN0 /\ ( # ` W ) e. NN /\ j < ( # ` W ) ) ) |
16 |
15
|
simp2bi |
|- ( j e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. NN ) |
17 |
16
|
adantl |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. NN ) |
18 |
|
zmodfzo |
|- ( ( ( j + N ) e. ZZ /\ ( # ` W ) e. NN ) -> ( ( j + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
19 |
14 17 18
|
syl2anc |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> ( ( j + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
20 |
|
simpr |
|- ( ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) /\ i = ( ( j + N ) mod ( # ` W ) ) ) -> i = ( ( j + N ) mod ( # ` W ) ) ) |
21 |
20
|
oveq1d |
|- ( ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) /\ i = ( ( j + N ) mod ( # ` W ) ) ) -> ( i - N ) = ( ( ( j + N ) mod ( # ` W ) ) - N ) ) |
22 |
21
|
oveq1d |
|- ( ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) /\ i = ( ( j + N ) mod ( # ` W ) ) ) -> ( ( i - N ) mod ( # ` W ) ) = ( ( ( ( j + N ) mod ( # ` W ) ) - N ) mod ( # ` W ) ) ) |
23 |
22
|
eqeq2d |
|- ( ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) /\ i = ( ( j + N ) mod ( # ` W ) ) ) -> ( j = ( ( i - N ) mod ( # ` W ) ) <-> j = ( ( ( ( j + N ) mod ( # ` W ) ) - N ) mod ( # ` W ) ) ) ) |
24 |
12
|
zred |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> j e. RR ) |
25 |
13
|
zred |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> N e. RR ) |
26 |
24 25
|
readdcld |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> ( j + N ) e. RR ) |
27 |
17
|
nnrpd |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. RR+ ) |
28 |
|
modsubmod |
|- ( ( ( j + N ) e. RR /\ N e. RR /\ ( # ` W ) e. RR+ ) -> ( ( ( ( j + N ) mod ( # ` W ) ) - N ) mod ( # ` W ) ) = ( ( ( j + N ) - N ) mod ( # ` W ) ) ) |
29 |
26 25 27 28
|
syl3anc |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( ( j + N ) mod ( # ` W ) ) - N ) mod ( # ` W ) ) = ( ( ( j + N ) - N ) mod ( # ` W ) ) ) |
30 |
12
|
zcnd |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> j e. CC ) |
31 |
13
|
zcnd |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> N e. CC ) |
32 |
30 31
|
pncand |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> ( ( j + N ) - N ) = j ) |
33 |
32
|
oveq1d |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( j + N ) - N ) mod ( # ` W ) ) = ( j mod ( # ` W ) ) ) |
34 |
|
zmodidfzoimp |
|- ( j e. ( 0 ..^ ( # ` W ) ) -> ( j mod ( # ` W ) ) = j ) |
35 |
34
|
adantl |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> ( j mod ( # ` W ) ) = j ) |
36 |
29 33 35
|
3eqtrrd |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> j = ( ( ( ( j + N ) mod ( # ` W ) ) - N ) mod ( # ` W ) ) ) |
37 |
19 23 36
|
rspcedvd |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ j e. ( 0 ..^ ( # ` W ) ) ) -> E. i e. ( 0 ..^ ( # ` W ) ) j = ( ( i - N ) mod ( # ` W ) ) ) |
38 |
|
simp3 |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) /\ j = ( ( i - N ) mod ( # ` W ) ) ) -> j = ( ( i - N ) mod ( # ` W ) ) ) |
39 |
38
|
fveq2d |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) /\ j = ( ( i - N ) mod ( # ` W ) ) ) -> ( ( W cyclShift N ) ` j ) = ( ( W cyclShift N ) ` ( ( i - N ) mod ( # ` W ) ) ) ) |
40 |
|
simp1l |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) /\ j = ( ( i - N ) mod ( # ` W ) ) ) -> W e. Word V ) |
41 |
|
simp1r |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) /\ j = ( ( i - N ) mod ( # ` W ) ) ) -> N e. ZZ ) |
42 |
|
simp2 |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) /\ j = ( ( i - N ) mod ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) |
43 |
|
cshwidxmodr |
|- ( ( W e. Word V /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( i - N ) mod ( # ` W ) ) ) = ( W ` i ) ) |
44 |
40 41 42 43
|
syl3anc |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) /\ j = ( ( i - N ) mod ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( i - N ) mod ( # ` W ) ) ) = ( W ` i ) ) |
45 |
39 44
|
eqtrd |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) /\ j = ( ( i - N ) mod ( # ` W ) ) ) -> ( ( W cyclShift N ) ` j ) = ( W ` i ) ) |
46 |
45
|
eqeq2d |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) /\ j = ( ( i - N ) mod ( # ` W ) ) ) -> ( c = ( ( W cyclShift N ) ` j ) <-> c = ( W ` i ) ) ) |
47 |
10 37 46
|
rexxfrd2 |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( E. j e. ( 0 ..^ ( # ` W ) ) c = ( ( W cyclShift N ) ` j ) <-> E. i e. ( 0 ..^ ( # ` W ) ) c = ( W ` i ) ) ) |
48 |
47
|
abbidv |
|- ( ( W e. Word V /\ N e. ZZ ) -> { c | E. j e. ( 0 ..^ ( # ` W ) ) c = ( ( W cyclShift N ) ` j ) } = { c | E. i e. ( 0 ..^ ( # ` W ) ) c = ( W ` i ) } ) |
49 |
|
cshwfn |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) |
50 |
|
fnrnfv |
|- ( ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) -> ran ( W cyclShift N ) = { c | E. j e. ( 0 ..^ ( # ` W ) ) c = ( ( W cyclShift N ) ` j ) } ) |
51 |
49 50
|
syl |
|- ( ( W e. Word V /\ N e. ZZ ) -> ran ( W cyclShift N ) = { c | E. j e. ( 0 ..^ ( # ` W ) ) c = ( ( W cyclShift N ) ` j ) } ) |
52 |
|
wrdfn |
|- ( W e. Word V -> W Fn ( 0 ..^ ( # ` W ) ) ) |
53 |
52
|
adantr |
|- ( ( W e. Word V /\ N e. ZZ ) -> W Fn ( 0 ..^ ( # ` W ) ) ) |
54 |
|
fnrnfv |
|- ( W Fn ( 0 ..^ ( # ` W ) ) -> ran W = { c | E. i e. ( 0 ..^ ( # ` W ) ) c = ( W ` i ) } ) |
55 |
53 54
|
syl |
|- ( ( W e. Word V /\ N e. ZZ ) -> ran W = { c | E. i e. ( 0 ..^ ( # ` W ) ) c = ( W ` i ) } ) |
56 |
48 51 55
|
3eqtr4d |
|- ( ( W e. Word V /\ N e. ZZ ) -> ran ( W cyclShift N ) = ran W ) |