| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzo0 |  |-  ( M e. ( 0 ..^ N ) <-> ( M e. NN0 /\ N e. NN /\ M < N ) ) | 
						
							| 2 |  | nn0z |  |-  ( M e. NN0 -> M e. ZZ ) | 
						
							| 3 | 2 | anim1i |  |-  ( ( M e. NN0 /\ N e. NN ) -> ( M e. ZZ /\ N e. NN ) ) | 
						
							| 4 | 3 | 3adant3 |  |-  ( ( M e. NN0 /\ N e. NN /\ M < N ) -> ( M e. ZZ /\ N e. NN ) ) | 
						
							| 5 | 1 4 | sylbi |  |-  ( M e. ( 0 ..^ N ) -> ( M e. ZZ /\ N e. NN ) ) | 
						
							| 6 |  | zmodidfzo |  |-  ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) = M <-> M e. ( 0 ..^ N ) ) ) | 
						
							| 7 | 6 | biimprd |  |-  ( ( M e. ZZ /\ N e. NN ) -> ( M e. ( 0 ..^ N ) -> ( M mod N ) = M ) ) | 
						
							| 8 | 5 7 | mpcom |  |-  ( M e. ( 0 ..^ N ) -> ( M mod N ) = M ) |