| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zmodid2 |  |-  ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) = M <-> M e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 2 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 3 |  | fzoval |  |-  ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( N e. NN -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( M e. ZZ /\ N e. NN ) -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 6 | 5 | eqcomd |  |-  ( ( M e. ZZ /\ N e. NN ) -> ( 0 ... ( N - 1 ) ) = ( 0 ..^ N ) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( ( M e. ZZ /\ N e. NN ) -> ( M e. ( 0 ... ( N - 1 ) ) <-> M e. ( 0 ..^ N ) ) ) | 
						
							| 8 | 1 7 | bitrd |  |-  ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) = M <-> M e. ( 0 ..^ N ) ) ) |