Metamath Proof Explorer


Theorem cycpm2cl

Description: Closure for the 2-cycles. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cycpm2.c C = toCyc D
cycpm2.d φ D V
cycpm2.i φ I D
cycpm2.j φ J D
cycpm2.1 φ I J
cycpm2cl.s S = SymGrp D
Assertion cycpm2cl φ C ⟨“ IJ ”⟩ Base S

Proof

Step Hyp Ref Expression
1 cycpm2.c C = toCyc D
2 cycpm2.d φ D V
3 cycpm2.i φ I D
4 cycpm2.j φ J D
5 cycpm2.1 φ I J
6 cycpm2cl.s S = SymGrp D
7 3 4 s2cld φ ⟨“ IJ ”⟩ Word D
8 3 4 5 s2f1 φ ⟨“ IJ ”⟩ : dom ⟨“ IJ ”⟩ 1-1 D
9 1 2 7 8 6 cycpmcl φ C ⟨“ IJ ”⟩ Base S