Metamath Proof Explorer


Theorem cyc2fv1

Description: Function value of a 2-cycle at the first point. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cycpm2.c C=toCycD
cycpm2.d φDV
cycpm2.i φID
cycpm2.j φJD
cycpm2.1 φIJ
cycpm2cl.s S=SymGrpD
Assertion cyc2fv1 φC⟨“IJ”⟩I=J

Proof

Step Hyp Ref Expression
1 cycpm2.c C=toCycD
2 cycpm2.d φDV
3 cycpm2.i φID
4 cycpm2.j φJD
5 cycpm2.1 φIJ
6 cycpm2cl.s S=SymGrpD
7 3 4 s2cld φ⟨“IJ”⟩WordD
8 3 4 5 s2f1 φ⟨“IJ”⟩:dom⟨“IJ”⟩1-1D
9 c0ex 0V
10 9 snid 00
11 s2len ⟨“IJ”⟩=2
12 11 oveq1i ⟨“IJ”⟩1=21
13 2m1e1 21=1
14 12 13 eqtr2i 1=⟨“IJ”⟩1
15 14 oveq2i 0..^1=0..^⟨“IJ”⟩1
16 fzo01 0..^1=0
17 15 16 eqtr3i 0..^⟨“IJ”⟩1=0
18 10 17 eleqtrri 00..^⟨“IJ”⟩1
19 18 a1i φ00..^⟨“IJ”⟩1
20 1 2 7 8 19 cycpmfv1 φC⟨“IJ”⟩⟨“IJ”⟩0=⟨“IJ”⟩0+1
21 s2fv0 ID⟨“IJ”⟩0=I
22 3 21 syl φ⟨“IJ”⟩0=I
23 22 fveq2d φC⟨“IJ”⟩⟨“IJ”⟩0=C⟨“IJ”⟩I
24 0p1e1 0+1=1
25 24 fveq2i ⟨“IJ”⟩0+1=⟨“IJ”⟩1
26 s2fv1 JD⟨“IJ”⟩1=J
27 4 26 syl φ⟨“IJ”⟩1=J
28 25 27 eqtrid φ⟨“IJ”⟩0+1=J
29 20 23 28 3eqtr3d φC⟨“IJ”⟩I=J