| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpm2.c |
|- C = ( toCyc ` D ) |
| 2 |
|
cycpm2.d |
|- ( ph -> D e. V ) |
| 3 |
|
cycpm2.i |
|- ( ph -> I e. D ) |
| 4 |
|
cycpm2.j |
|- ( ph -> J e. D ) |
| 5 |
|
cycpm2.1 |
|- ( ph -> I =/= J ) |
| 6 |
|
cycpm2cl.s |
|- S = ( SymGrp ` D ) |
| 7 |
3 4
|
s2cld |
|- ( ph -> <" I J "> e. Word D ) |
| 8 |
3 4 5
|
s2f1 |
|- ( ph -> <" I J "> : dom <" I J "> -1-1-> D ) |
| 9 |
|
c0ex |
|- 0 e. _V |
| 10 |
9
|
snid |
|- 0 e. { 0 } |
| 11 |
|
s2len |
|- ( # ` <" I J "> ) = 2 |
| 12 |
11
|
oveq1i |
|- ( ( # ` <" I J "> ) - 1 ) = ( 2 - 1 ) |
| 13 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 14 |
12 13
|
eqtr2i |
|- 1 = ( ( # ` <" I J "> ) - 1 ) |
| 15 |
14
|
oveq2i |
|- ( 0 ..^ 1 ) = ( 0 ..^ ( ( # ` <" I J "> ) - 1 ) ) |
| 16 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
| 17 |
15 16
|
eqtr3i |
|- ( 0 ..^ ( ( # ` <" I J "> ) - 1 ) ) = { 0 } |
| 18 |
10 17
|
eleqtrri |
|- 0 e. ( 0 ..^ ( ( # ` <" I J "> ) - 1 ) ) |
| 19 |
18
|
a1i |
|- ( ph -> 0 e. ( 0 ..^ ( ( # ` <" I J "> ) - 1 ) ) ) |
| 20 |
1 2 7 8 19
|
cycpmfv1 |
|- ( ph -> ( ( C ` <" I J "> ) ` ( <" I J "> ` 0 ) ) = ( <" I J "> ` ( 0 + 1 ) ) ) |
| 21 |
|
s2fv0 |
|- ( I e. D -> ( <" I J "> ` 0 ) = I ) |
| 22 |
3 21
|
syl |
|- ( ph -> ( <" I J "> ` 0 ) = I ) |
| 23 |
22
|
fveq2d |
|- ( ph -> ( ( C ` <" I J "> ) ` ( <" I J "> ` 0 ) ) = ( ( C ` <" I J "> ) ` I ) ) |
| 24 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 25 |
24
|
fveq2i |
|- ( <" I J "> ` ( 0 + 1 ) ) = ( <" I J "> ` 1 ) |
| 26 |
|
s2fv1 |
|- ( J e. D -> ( <" I J "> ` 1 ) = J ) |
| 27 |
4 26
|
syl |
|- ( ph -> ( <" I J "> ` 1 ) = J ) |
| 28 |
25 27
|
eqtrid |
|- ( ph -> ( <" I J "> ` ( 0 + 1 ) ) = J ) |
| 29 |
20 23 28
|
3eqtr3d |
|- ( ph -> ( ( C ` <" I J "> ) ` I ) = J ) |