| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpm2.c |  |-  C = ( toCyc ` D ) | 
						
							| 2 |  | cycpm2.d |  |-  ( ph -> D e. V ) | 
						
							| 3 |  | cycpm2.i |  |-  ( ph -> I e. D ) | 
						
							| 4 |  | cycpm2.j |  |-  ( ph -> J e. D ) | 
						
							| 5 |  | cycpm2.1 |  |-  ( ph -> I =/= J ) | 
						
							| 6 |  | cycpm2cl.s |  |-  S = ( SymGrp ` D ) | 
						
							| 7 | 3 4 | s2cld |  |-  ( ph -> <" I J "> e. Word D ) | 
						
							| 8 | 3 4 5 | s2f1 |  |-  ( ph -> <" I J "> : dom <" I J "> -1-1-> D ) | 
						
							| 9 |  | c0ex |  |-  0 e. _V | 
						
							| 10 | 9 | snid |  |-  0 e. { 0 } | 
						
							| 11 |  | s2len |  |-  ( # ` <" I J "> ) = 2 | 
						
							| 12 | 11 | oveq1i |  |-  ( ( # ` <" I J "> ) - 1 ) = ( 2 - 1 ) | 
						
							| 13 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 14 | 12 13 | eqtr2i |  |-  1 = ( ( # ` <" I J "> ) - 1 ) | 
						
							| 15 | 14 | oveq2i |  |-  ( 0 ..^ 1 ) = ( 0 ..^ ( ( # ` <" I J "> ) - 1 ) ) | 
						
							| 16 |  | fzo01 |  |-  ( 0 ..^ 1 ) = { 0 } | 
						
							| 17 | 15 16 | eqtr3i |  |-  ( 0 ..^ ( ( # ` <" I J "> ) - 1 ) ) = { 0 } | 
						
							| 18 | 10 17 | eleqtrri |  |-  0 e. ( 0 ..^ ( ( # ` <" I J "> ) - 1 ) ) | 
						
							| 19 | 18 | a1i |  |-  ( ph -> 0 e. ( 0 ..^ ( ( # ` <" I J "> ) - 1 ) ) ) | 
						
							| 20 | 1 2 7 8 19 | cycpmfv1 |  |-  ( ph -> ( ( C ` <" I J "> ) ` ( <" I J "> ` 0 ) ) = ( <" I J "> ` ( 0 + 1 ) ) ) | 
						
							| 21 |  | s2fv0 |  |-  ( I e. D -> ( <" I J "> ` 0 ) = I ) | 
						
							| 22 | 3 21 | syl |  |-  ( ph -> ( <" I J "> ` 0 ) = I ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ph -> ( ( C ` <" I J "> ) ` ( <" I J "> ` 0 ) ) = ( ( C ` <" I J "> ) ` I ) ) | 
						
							| 24 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 25 | 24 | fveq2i |  |-  ( <" I J "> ` ( 0 + 1 ) ) = ( <" I J "> ` 1 ) | 
						
							| 26 |  | s2fv1 |  |-  ( J e. D -> ( <" I J "> ` 1 ) = J ) | 
						
							| 27 | 4 26 | syl |  |-  ( ph -> ( <" I J "> ` 1 ) = J ) | 
						
							| 28 | 25 27 | eqtrid |  |-  ( ph -> ( <" I J "> ` ( 0 + 1 ) ) = J ) | 
						
							| 29 | 20 23 28 | 3eqtr3d |  |-  ( ph -> ( ( C ` <" I J "> ) ` I ) = J ) |