| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tocycval.1 |
|- C = ( toCyc ` D ) |
| 2 |
|
tocycfv.d |
|- ( ph -> D e. V ) |
| 3 |
|
tocycfv.w |
|- ( ph -> W e. Word D ) |
| 4 |
|
tocycfv.1 |
|- ( ph -> W : dom W -1-1-> D ) |
| 5 |
|
cycpmfv1.1 |
|- ( ph -> N e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) |
| 6 |
|
lencl |
|- ( W e. Word D -> ( # ` W ) e. NN0 ) |
| 7 |
3 6
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
| 8 |
7
|
nn0zd |
|- ( ph -> ( # ` W ) e. ZZ ) |
| 9 |
|
fzossrbm1 |
|- ( ( # ` W ) e. ZZ -> ( 0 ..^ ( ( # ` W ) - 1 ) ) C_ ( 0 ..^ ( # ` W ) ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( 0 ..^ ( ( # ` W ) - 1 ) ) C_ ( 0 ..^ ( # ` W ) ) ) |
| 11 |
10 5
|
sseldd |
|- ( ph -> N e. ( 0 ..^ ( # ` W ) ) ) |
| 12 |
1 2 3 4 11
|
cycpmfvlem |
|- ( ph -> ( ( C ` W ) ` ( W ` N ) ) = ( ( ( W cyclShift 1 ) o. `' W ) ` ( W ` N ) ) ) |
| 13 |
|
df-f1 |
|- ( W : dom W -1-1-> D <-> ( W : dom W --> D /\ Fun `' W ) ) |
| 14 |
4 13
|
sylib |
|- ( ph -> ( W : dom W --> D /\ Fun `' W ) ) |
| 15 |
14
|
simprd |
|- ( ph -> Fun `' W ) |
| 16 |
|
wrdfn |
|- ( W e. Word D -> W Fn ( 0 ..^ ( # ` W ) ) ) |
| 17 |
3 16
|
syl |
|- ( ph -> W Fn ( 0 ..^ ( # ` W ) ) ) |
| 18 |
|
fnfvelrn |
|- ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` N ) e. ran W ) |
| 19 |
17 11 18
|
syl2anc |
|- ( ph -> ( W ` N ) e. ran W ) |
| 20 |
|
df-rn |
|- ran W = dom `' W |
| 21 |
19 20
|
eleqtrdi |
|- ( ph -> ( W ` N ) e. dom `' W ) |
| 22 |
|
fvco |
|- ( ( Fun `' W /\ ( W ` N ) e. dom `' W ) -> ( ( ( W cyclShift 1 ) o. `' W ) ` ( W ` N ) ) = ( ( W cyclShift 1 ) ` ( `' W ` ( W ` N ) ) ) ) |
| 23 |
15 21 22
|
syl2anc |
|- ( ph -> ( ( ( W cyclShift 1 ) o. `' W ) ` ( W ` N ) ) = ( ( W cyclShift 1 ) ` ( `' W ` ( W ` N ) ) ) ) |
| 24 |
|
f1f1orn |
|- ( W : dom W -1-1-> D -> W : dom W -1-1-onto-> ran W ) |
| 25 |
4 24
|
syl |
|- ( ph -> W : dom W -1-1-onto-> ran W ) |
| 26 |
17
|
fndmd |
|- ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) |
| 27 |
11 26
|
eleqtrrd |
|- ( ph -> N e. dom W ) |
| 28 |
|
f1ocnvfv1 |
|- ( ( W : dom W -1-1-onto-> ran W /\ N e. dom W ) -> ( `' W ` ( W ` N ) ) = N ) |
| 29 |
25 27 28
|
syl2anc |
|- ( ph -> ( `' W ` ( W ` N ) ) = N ) |
| 30 |
29
|
fveq2d |
|- ( ph -> ( ( W cyclShift 1 ) ` ( `' W ` ( W ` N ) ) ) = ( ( W cyclShift 1 ) ` N ) ) |
| 31 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 32 |
|
cshwidxmod |
|- ( ( W e. Word D /\ 1 e. ZZ /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift 1 ) ` N ) = ( W ` ( ( N + 1 ) mod ( # ` W ) ) ) ) |
| 33 |
3 31 11 32
|
syl3anc |
|- ( ph -> ( ( W cyclShift 1 ) ` N ) = ( W ` ( ( N + 1 ) mod ( # ` W ) ) ) ) |
| 34 |
|
fzo0ss1 |
|- ( 1 ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) |
| 35 |
|
fzoaddel2 |
|- ( ( N e. ( 0 ..^ ( ( # ` W ) - 1 ) ) /\ ( # ` W ) e. ZZ /\ 1 e. ZZ ) -> ( N + 1 ) e. ( 1 ..^ ( # ` W ) ) ) |
| 36 |
5 8 31 35
|
syl3anc |
|- ( ph -> ( N + 1 ) e. ( 1 ..^ ( # ` W ) ) ) |
| 37 |
34 36
|
sselid |
|- ( ph -> ( N + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 38 |
|
zmodidfzoimp |
|- ( ( N + 1 ) e. ( 0 ..^ ( # ` W ) ) -> ( ( N + 1 ) mod ( # ` W ) ) = ( N + 1 ) ) |
| 39 |
37 38
|
syl |
|- ( ph -> ( ( N + 1 ) mod ( # ` W ) ) = ( N + 1 ) ) |
| 40 |
39
|
fveq2d |
|- ( ph -> ( W ` ( ( N + 1 ) mod ( # ` W ) ) ) = ( W ` ( N + 1 ) ) ) |
| 41 |
30 33 40
|
3eqtrd |
|- ( ph -> ( ( W cyclShift 1 ) ` ( `' W ` ( W ` N ) ) ) = ( W ` ( N + 1 ) ) ) |
| 42 |
12 23 41
|
3eqtrd |
|- ( ph -> ( ( C ` W ) ` ( W ` N ) ) = ( W ` ( N + 1 ) ) ) |