Step |
Hyp |
Ref |
Expression |
1 |
|
tocycval.1 |
|- C = ( toCyc ` D ) |
2 |
|
tocycfv.d |
|- ( ph -> D e. V ) |
3 |
|
tocycfv.w |
|- ( ph -> W e. Word D ) |
4 |
|
tocycfv.1 |
|- ( ph -> W : dom W -1-1-> D ) |
5 |
|
cycpmfv2.1 |
|- ( ph -> 0 < ( # ` W ) ) |
6 |
|
cycpmfv2.2 |
|- ( ph -> N = ( ( # ` W ) - 1 ) ) |
7 |
|
lencl |
|- ( W e. Word D -> ( # ` W ) e. NN0 ) |
8 |
3 7
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
9 |
|
elnnnn0b |
|- ( ( # ` W ) e. NN <-> ( ( # ` W ) e. NN0 /\ 0 < ( # ` W ) ) ) |
10 |
8 5 9
|
sylanbrc |
|- ( ph -> ( # ` W ) e. NN ) |
11 |
|
elfz1end |
|- ( ( # ` W ) e. NN <-> ( # ` W ) e. ( 1 ... ( # ` W ) ) ) |
12 |
10 11
|
sylib |
|- ( ph -> ( # ` W ) e. ( 1 ... ( # ` W ) ) ) |
13 |
|
fz1fzo0m1 |
|- ( ( # ` W ) e. ( 1 ... ( # ` W ) ) -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
14 |
12 13
|
syl |
|- ( ph -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
15 |
6 14
|
eqeltrd |
|- ( ph -> N e. ( 0 ..^ ( # ` W ) ) ) |
16 |
1 2 3 4 15
|
cycpmfvlem |
|- ( ph -> ( ( C ` W ) ` ( W ` N ) ) = ( ( ( W cyclShift 1 ) o. `' W ) ` ( W ` N ) ) ) |
17 |
|
df-f1 |
|- ( W : dom W -1-1-> D <-> ( W : dom W --> D /\ Fun `' W ) ) |
18 |
4 17
|
sylib |
|- ( ph -> ( W : dom W --> D /\ Fun `' W ) ) |
19 |
18
|
simprd |
|- ( ph -> Fun `' W ) |
20 |
|
wrdfn |
|- ( W e. Word D -> W Fn ( 0 ..^ ( # ` W ) ) ) |
21 |
3 20
|
syl |
|- ( ph -> W Fn ( 0 ..^ ( # ` W ) ) ) |
22 |
|
fnfvelrn |
|- ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` N ) e. ran W ) |
23 |
21 15 22
|
syl2anc |
|- ( ph -> ( W ` N ) e. ran W ) |
24 |
|
df-rn |
|- ran W = dom `' W |
25 |
23 24
|
eleqtrdi |
|- ( ph -> ( W ` N ) e. dom `' W ) |
26 |
|
fvco |
|- ( ( Fun `' W /\ ( W ` N ) e. dom `' W ) -> ( ( ( W cyclShift 1 ) o. `' W ) ` ( W ` N ) ) = ( ( W cyclShift 1 ) ` ( `' W ` ( W ` N ) ) ) ) |
27 |
19 25 26
|
syl2anc |
|- ( ph -> ( ( ( W cyclShift 1 ) o. `' W ) ` ( W ` N ) ) = ( ( W cyclShift 1 ) ` ( `' W ` ( W ` N ) ) ) ) |
28 |
|
f1f1orn |
|- ( W : dom W -1-1-> D -> W : dom W -1-1-onto-> ran W ) |
29 |
4 28
|
syl |
|- ( ph -> W : dom W -1-1-onto-> ran W ) |
30 |
21
|
fndmd |
|- ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) |
31 |
15 30
|
eleqtrrd |
|- ( ph -> N e. dom W ) |
32 |
|
f1ocnvfv1 |
|- ( ( W : dom W -1-1-onto-> ran W /\ N e. dom W ) -> ( `' W ` ( W ` N ) ) = N ) |
33 |
29 31 32
|
syl2anc |
|- ( ph -> ( `' W ` ( W ` N ) ) = N ) |
34 |
33
|
fveq2d |
|- ( ph -> ( ( W cyclShift 1 ) ` ( `' W ` ( W ` N ) ) ) = ( ( W cyclShift 1 ) ` N ) ) |
35 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
36 |
|
cshwidxmod |
|- ( ( W e. Word D /\ 1 e. ZZ /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift 1 ) ` N ) = ( W ` ( ( N + 1 ) mod ( # ` W ) ) ) ) |
37 |
3 35 15 36
|
syl3anc |
|- ( ph -> ( ( W cyclShift 1 ) ` N ) = ( W ` ( ( N + 1 ) mod ( # ` W ) ) ) ) |
38 |
|
fzossfz |
|- ( 0 ..^ ( # ` W ) ) C_ ( 0 ... ( # ` W ) ) |
39 |
|
fzssz |
|- ( 0 ... ( # ` W ) ) C_ ZZ |
40 |
38 39
|
sstri |
|- ( 0 ..^ ( # ` W ) ) C_ ZZ |
41 |
40 15
|
sselid |
|- ( ph -> N e. ZZ ) |
42 |
41
|
zred |
|- ( ph -> N e. RR ) |
43 |
10
|
nnrpd |
|- ( ph -> ( # ` W ) e. RR+ ) |
44 |
6
|
oveq1d |
|- ( ph -> ( N mod ( # ` W ) ) = ( ( ( # ` W ) - 1 ) mod ( # ` W ) ) ) |
45 |
|
zmodidfzoimp |
|- ( ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) -> ( ( ( # ` W ) - 1 ) mod ( # ` W ) ) = ( ( # ` W ) - 1 ) ) |
46 |
14 45
|
syl |
|- ( ph -> ( ( ( # ` W ) - 1 ) mod ( # ` W ) ) = ( ( # ` W ) - 1 ) ) |
47 |
44 46
|
eqtrd |
|- ( ph -> ( N mod ( # ` W ) ) = ( ( # ` W ) - 1 ) ) |
48 |
|
modm1p1mod0 |
|- ( ( N e. RR /\ ( # ` W ) e. RR+ ) -> ( ( N mod ( # ` W ) ) = ( ( # ` W ) - 1 ) -> ( ( N + 1 ) mod ( # ` W ) ) = 0 ) ) |
49 |
48
|
imp |
|- ( ( ( N e. RR /\ ( # ` W ) e. RR+ ) /\ ( N mod ( # ` W ) ) = ( ( # ` W ) - 1 ) ) -> ( ( N + 1 ) mod ( # ` W ) ) = 0 ) |
50 |
42 43 47 49
|
syl21anc |
|- ( ph -> ( ( N + 1 ) mod ( # ` W ) ) = 0 ) |
51 |
50
|
fveq2d |
|- ( ph -> ( W ` ( ( N + 1 ) mod ( # ` W ) ) ) = ( W ` 0 ) ) |
52 |
34 37 51
|
3eqtrd |
|- ( ph -> ( ( W cyclShift 1 ) ` ( `' W ` ( W ` N ) ) ) = ( W ` 0 ) ) |
53 |
16 27 52
|
3eqtrd |
|- ( ph -> ( ( C ` W ) ` ( W ` N ) ) = ( W ` 0 ) ) |