Step |
Hyp |
Ref |
Expression |
1 |
|
tocycval.1 |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
2 |
|
tocycfv.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
3 |
|
tocycfv.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
4 |
|
tocycfv.1 |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
5 |
|
cycpmfv1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
6 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
8 |
7
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
9 |
|
fzossrbm1 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
11 |
10 5
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
12 |
1 2 3 4 11
|
cycpmfvlem |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑊 ) ‘ ( 𝑊 ‘ 𝑁 ) ) = ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ‘ ( 𝑊 ‘ 𝑁 ) ) ) |
13 |
|
df-f1 |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ↔ ( 𝑊 : dom 𝑊 ⟶ 𝐷 ∧ Fun ◡ 𝑊 ) ) |
14 |
4 13
|
sylib |
⊢ ( 𝜑 → ( 𝑊 : dom 𝑊 ⟶ 𝐷 ∧ Fun ◡ 𝑊 ) ) |
15 |
14
|
simprd |
⊢ ( 𝜑 → Fun ◡ 𝑊 ) |
16 |
|
wrdfn |
⊢ ( 𝑊 ∈ Word 𝐷 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
18 |
|
fnfvelrn |
⊢ ( ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑁 ) ∈ ran 𝑊 ) |
19 |
17 11 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝑁 ) ∈ ran 𝑊 ) |
20 |
|
df-rn |
⊢ ran 𝑊 = dom ◡ 𝑊 |
21 |
19 20
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝑁 ) ∈ dom ◡ 𝑊 ) |
22 |
|
fvco |
⊢ ( ( Fun ◡ 𝑊 ∧ ( 𝑊 ‘ 𝑁 ) ∈ dom ◡ 𝑊 ) → ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ‘ ( 𝑊 ‘ 𝑁 ) ) = ( ( 𝑊 cyclShift 1 ) ‘ ( ◡ 𝑊 ‘ ( 𝑊 ‘ 𝑁 ) ) ) ) |
23 |
15 21 22
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ‘ ( 𝑊 ‘ 𝑁 ) ) = ( ( 𝑊 cyclShift 1 ) ‘ ( ◡ 𝑊 ‘ ( 𝑊 ‘ 𝑁 ) ) ) ) |
24 |
|
f1f1orn |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
25 |
4 24
|
syl |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
26 |
17
|
fndmd |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
27 |
11 26
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ dom 𝑊 ) |
28 |
|
f1ocnvfv1 |
⊢ ( ( 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ∧ 𝑁 ∈ dom 𝑊 ) → ( ◡ 𝑊 ‘ ( 𝑊 ‘ 𝑁 ) ) = 𝑁 ) |
29 |
25 27 28
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ ( 𝑊 ‘ 𝑁 ) ) = 𝑁 ) |
30 |
29
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ‘ ( ◡ 𝑊 ‘ ( 𝑊 ‘ 𝑁 ) ) ) = ( ( 𝑊 cyclShift 1 ) ‘ 𝑁 ) ) |
31 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
32 |
|
cshwidxmod |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 1 ) ‘ 𝑁 ) = ( 𝑊 ‘ ( ( 𝑁 + 1 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
33 |
3 31 11 32
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ‘ 𝑁 ) = ( 𝑊 ‘ ( ( 𝑁 + 1 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
34 |
|
fzo0ss1 |
⊢ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) |
35 |
|
fzoaddel2 |
⊢ ( ( 𝑁 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑁 + 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) |
36 |
5 8 31 35
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) |
37 |
34 36
|
sselid |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
38 |
|
zmodidfzoimp |
⊢ ( ( 𝑁 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑁 + 1 ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝑁 + 1 ) ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝑁 + 1 ) ) |
40 |
39
|
fveq2d |
⊢ ( 𝜑 → ( 𝑊 ‘ ( ( 𝑁 + 1 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( 𝑁 + 1 ) ) ) |
41 |
30 33 40
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ‘ ( ◡ 𝑊 ‘ ( 𝑊 ‘ 𝑁 ) ) ) = ( 𝑊 ‘ ( 𝑁 + 1 ) ) ) |
42 |
12 23 41
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑊 ) ‘ ( 𝑊 ‘ 𝑁 ) ) = ( 𝑊 ‘ ( 𝑁 + 1 ) ) ) |