Metamath Proof Explorer


Theorem cyc2fv1

Description: Function value of a 2-cycle at the first point. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cycpm2.c 𝐶 = ( toCyc ‘ 𝐷 )
cycpm2.d ( 𝜑𝐷𝑉 )
cycpm2.i ( 𝜑𝐼𝐷 )
cycpm2.j ( 𝜑𝐽𝐷 )
cycpm2.1 ( 𝜑𝐼𝐽 )
cycpm2cl.s 𝑆 = ( SymGrp ‘ 𝐷 )
Assertion cyc2fv1 ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ 𝐼 ) = 𝐽 )

Proof

Step Hyp Ref Expression
1 cycpm2.c 𝐶 = ( toCyc ‘ 𝐷 )
2 cycpm2.d ( 𝜑𝐷𝑉 )
3 cycpm2.i ( 𝜑𝐼𝐷 )
4 cycpm2.j ( 𝜑𝐽𝐷 )
5 cycpm2.1 ( 𝜑𝐼𝐽 )
6 cycpm2cl.s 𝑆 = ( SymGrp ‘ 𝐷 )
7 3 4 s2cld ( 𝜑 → ⟨“ 𝐼 𝐽 ”⟩ ∈ Word 𝐷 )
8 3 4 5 s2f1 ( 𝜑 → ⟨“ 𝐼 𝐽 ”⟩ : dom ⟨“ 𝐼 𝐽 ”⟩ –1-1𝐷 )
9 c0ex 0 ∈ V
10 9 snid 0 ∈ { 0 }
11 s2len ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) = 2
12 11 oveq1i ( ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) − 1 ) = ( 2 − 1 )
13 2m1e1 ( 2 − 1 ) = 1
14 12 13 eqtr2i 1 = ( ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) − 1 )
15 14 oveq2i ( 0 ..^ 1 ) = ( 0 ..^ ( ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) − 1 ) )
16 fzo01 ( 0 ..^ 1 ) = { 0 }
17 15 16 eqtr3i ( 0 ..^ ( ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) − 1 ) ) = { 0 }
18 10 17 eleqtrri 0 ∈ ( 0 ..^ ( ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) − 1 ) )
19 18 a1i ( 𝜑 → 0 ∈ ( 0 ..^ ( ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) − 1 ) ) )
20 1 2 7 8 19 cycpmfv1 ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 0 ) ) = ( ⟨“ 𝐼 𝐽 ”⟩ ‘ ( 0 + 1 ) ) )
21 s2fv0 ( 𝐼𝐷 → ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 0 ) = 𝐼 )
22 3 21 syl ( 𝜑 → ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 0 ) = 𝐼 )
23 22 fveq2d ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 0 ) ) = ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ 𝐼 ) )
24 0p1e1 ( 0 + 1 ) = 1
25 24 fveq2i ( ⟨“ 𝐼 𝐽 ”⟩ ‘ ( 0 + 1 ) ) = ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 1 )
26 s2fv1 ( 𝐽𝐷 → ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 1 ) = 𝐽 )
27 4 26 syl ( 𝜑 → ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 1 ) = 𝐽 )
28 25 27 syl5eq ( 𝜑 → ( ⟨“ 𝐼 𝐽 ”⟩ ‘ ( 0 + 1 ) ) = 𝐽 )
29 20 23 28 3eqtr3d ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ 𝐼 ) = 𝐽 )