Metamath Proof Explorer


Theorem cyc2fv2

Description: Function value of a 2-cycle at the second point. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cycpm2.c 𝐶 = ( toCyc ‘ 𝐷 )
cycpm2.d ( 𝜑𝐷𝑉 )
cycpm2.i ( 𝜑𝐼𝐷 )
cycpm2.j ( 𝜑𝐽𝐷 )
cycpm2.1 ( 𝜑𝐼𝐽 )
cycpm2cl.s 𝑆 = ( SymGrp ‘ 𝐷 )
Assertion cyc2fv2 ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ 𝐽 ) = 𝐼 )

Proof

Step Hyp Ref Expression
1 cycpm2.c 𝐶 = ( toCyc ‘ 𝐷 )
2 cycpm2.d ( 𝜑𝐷𝑉 )
3 cycpm2.i ( 𝜑𝐼𝐷 )
4 cycpm2.j ( 𝜑𝐽𝐷 )
5 cycpm2.1 ( 𝜑𝐼𝐽 )
6 cycpm2cl.s 𝑆 = ( SymGrp ‘ 𝐷 )
7 3 4 s2cld ( 𝜑 → ⟨“ 𝐼 𝐽 ”⟩ ∈ Word 𝐷 )
8 3 4 5 s2f1 ( 𝜑 → ⟨“ 𝐼 𝐽 ”⟩ : dom ⟨“ 𝐼 𝐽 ”⟩ –1-1𝐷 )
9 2pos 0 < 2
10 s2len ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) = 2
11 9 10 breqtrri 0 < ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ )
12 11 a1i ( 𝜑 → 0 < ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) )
13 10 oveq1i ( ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) − 1 ) = ( 2 − 1 )
14 2m1e1 ( 2 − 1 ) = 1
15 13 14 eqtr2i 1 = ( ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) − 1 )
16 15 a1i ( 𝜑 → 1 = ( ( ♯ ‘ ⟨“ 𝐼 𝐽 ”⟩ ) − 1 ) )
17 1 2 7 8 12 16 cycpmfv2 ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 1 ) ) = ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 0 ) )
18 s2fv1 ( 𝐽𝐷 → ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 1 ) = 𝐽 )
19 4 18 syl ( 𝜑 → ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 1 ) = 𝐽 )
20 19 fveq2d ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 1 ) ) = ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ 𝐽 ) )
21 s2fv0 ( 𝐼𝐷 → ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 0 ) = 𝐼 )
22 3 21 syl ( 𝜑 → ( ⟨“ 𝐼 𝐽 ”⟩ ‘ 0 ) = 𝐼 )
23 17 20 22 3eqtr3d ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ 𝐽 ) = 𝐼 )