| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trsp2cyc.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
| 2 |
|
trsp2cyc.c |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
| 3 |
|
simplr |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) |
| 4 |
|
breq1 |
⊢ ( 𝑦 = 𝑝 → ( 𝑦 ≈ 2o ↔ 𝑝 ≈ 2o ) ) |
| 5 |
4
|
elrab |
⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↔ ( 𝑝 ∈ 𝒫 𝐷 ∧ 𝑝 ≈ 2o ) ) |
| 6 |
3 5
|
sylib |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ( 𝑝 ∈ 𝒫 𝐷 ∧ 𝑝 ≈ 2o ) ) |
| 7 |
6
|
simprd |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → 𝑝 ≈ 2o ) |
| 8 |
|
en2 |
⊢ ( 𝑝 ≈ 2o → ∃ 𝑖 ∃ 𝑗 𝑝 = { 𝑖 , 𝑗 } ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ∃ 𝑖 ∃ 𝑗 𝑝 = { 𝑖 , 𝑗 } ) |
| 10 |
6
|
simpld |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → 𝑝 ∈ 𝒫 𝐷 ) |
| 11 |
10
|
elpwid |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → 𝑝 ⊆ 𝐷 ) |
| 12 |
11
|
adantr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑝 ⊆ 𝐷 ) |
| 13 |
|
vex |
⊢ 𝑖 ∈ V |
| 14 |
13
|
prid1 |
⊢ 𝑖 ∈ { 𝑖 , 𝑗 } |
| 15 |
|
simpr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑝 = { 𝑖 , 𝑗 } ) |
| 16 |
14 15
|
eleqtrrid |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑖 ∈ 𝑝 ) |
| 17 |
12 16
|
sseldd |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑖 ∈ 𝐷 ) |
| 18 |
|
vex |
⊢ 𝑗 ∈ V |
| 19 |
18
|
prid2 |
⊢ 𝑗 ∈ { 𝑖 , 𝑗 } |
| 20 |
19 15
|
eleqtrrid |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑗 ∈ 𝑝 ) |
| 21 |
12 20
|
sseldd |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑗 ∈ 𝐷 ) |
| 22 |
7
|
adantr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑝 ≈ 2o ) |
| 23 |
15 22
|
eqbrtrrd |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → { 𝑖 , 𝑗 } ≈ 2o ) |
| 24 |
|
pr2ne |
⊢ ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) → ( { 𝑖 , 𝑗 } ≈ 2o ↔ 𝑖 ≠ 𝑗 ) ) |
| 25 |
24
|
biimpa |
⊢ ( ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ { 𝑖 , 𝑗 } ≈ 2o ) → 𝑖 ≠ 𝑗 ) |
| 26 |
17 21 23 25
|
syl21anc |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑖 ≠ 𝑗 ) |
| 27 |
|
simplr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 28 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝐷 ∈ 𝑉 ) |
| 29 |
|
eqid |
⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) |
| 30 |
29
|
pmtrval |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑝 ⊆ 𝐷 ∧ 𝑝 ≈ 2o ) → ( ( pmTrsp ‘ 𝐷 ) ‘ 𝑝 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 31 |
28 12 22 30
|
syl3anc |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → ( ( pmTrsp ‘ 𝐷 ) ‘ 𝑝 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 32 |
15
|
fveq2d |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → ( ( pmTrsp ‘ 𝐷 ) ‘ 𝑝 ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑖 , 𝑗 } ) ) |
| 33 |
27 31 32
|
3eqtr2d |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑃 = ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑖 , 𝑗 } ) ) |
| 34 |
2 28 17 21 26 29
|
cycpm2tr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑖 , 𝑗 } ) ) |
| 35 |
33 34
|
eqtr4d |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) |
| 36 |
26 35
|
jca |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) |
| 37 |
17 21 36
|
jca31 |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) |
| 38 |
37
|
ex |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ( 𝑝 = { 𝑖 , 𝑗 } → ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) ) |
| 39 |
38
|
2eximdv |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ( ∃ 𝑖 ∃ 𝑗 𝑝 = { 𝑖 , 𝑗 } → ∃ 𝑖 ∃ 𝑗 ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) ) |
| 40 |
9 39
|
mpd |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ∃ 𝑖 ∃ 𝑗 ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) |
| 41 |
|
r2ex |
⊢ ( ∃ 𝑖 ∈ 𝐷 ∃ 𝑗 ∈ 𝐷 ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ↔ ∃ 𝑖 ∃ 𝑗 ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) |
| 42 |
40 41
|
sylibr |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ∃ 𝑖 ∈ 𝐷 ∃ 𝑗 ∈ 𝐷 ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) |
| 43 |
|
simpr |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → 𝑃 ∈ 𝑇 ) |
| 44 |
29
|
pmtrfval |
⊢ ( 𝐷 ∈ 𝑉 → ( pmTrsp ‘ 𝐷 ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → ( pmTrsp ‘ 𝐷 ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 46 |
45
|
rneqd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → ran ( pmTrsp ‘ 𝐷 ) = ran ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 47 |
1 46
|
eqtrid |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → 𝑇 = ran ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 48 |
43 47
|
eleqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → 𝑃 ∈ ran ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 49 |
|
eqid |
⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 50 |
49
|
elrnmpt |
⊢ ( 𝑃 ∈ 𝑇 → ( 𝑃 ∈ ran ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ↔ ∃ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → ( 𝑃 ∈ ran ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ↔ ∃ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 52 |
48 51
|
mpbid |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → ∃ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 53 |
42 52
|
r19.29a |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → ∃ 𝑖 ∈ 𝐷 ∃ 𝑗 ∈ 𝐷 ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) |