Step |
Hyp |
Ref |
Expression |
1 |
|
trsp2cyc.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
2 |
|
trsp2cyc.c |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
3 |
|
simplr |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) |
4 |
|
breq1 |
⊢ ( 𝑦 = 𝑝 → ( 𝑦 ≈ 2o ↔ 𝑝 ≈ 2o ) ) |
5 |
4
|
elrab |
⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↔ ( 𝑝 ∈ 𝒫 𝐷 ∧ 𝑝 ≈ 2o ) ) |
6 |
3 5
|
sylib |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ( 𝑝 ∈ 𝒫 𝐷 ∧ 𝑝 ≈ 2o ) ) |
7 |
6
|
simprd |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → 𝑝 ≈ 2o ) |
8 |
|
en2 |
⊢ ( 𝑝 ≈ 2o → ∃ 𝑖 ∃ 𝑗 𝑝 = { 𝑖 , 𝑗 } ) |
9 |
7 8
|
syl |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ∃ 𝑖 ∃ 𝑗 𝑝 = { 𝑖 , 𝑗 } ) |
10 |
6
|
simpld |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → 𝑝 ∈ 𝒫 𝐷 ) |
11 |
10
|
elpwid |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → 𝑝 ⊆ 𝐷 ) |
12 |
11
|
adantr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑝 ⊆ 𝐷 ) |
13 |
|
vex |
⊢ 𝑖 ∈ V |
14 |
13
|
prid1 |
⊢ 𝑖 ∈ { 𝑖 , 𝑗 } |
15 |
|
simpr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑝 = { 𝑖 , 𝑗 } ) |
16 |
14 15
|
eleqtrrid |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑖 ∈ 𝑝 ) |
17 |
12 16
|
sseldd |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑖 ∈ 𝐷 ) |
18 |
|
vex |
⊢ 𝑗 ∈ V |
19 |
18
|
prid2 |
⊢ 𝑗 ∈ { 𝑖 , 𝑗 } |
20 |
19 15
|
eleqtrrid |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑗 ∈ 𝑝 ) |
21 |
12 20
|
sseldd |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑗 ∈ 𝐷 ) |
22 |
7
|
adantr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑝 ≈ 2o ) |
23 |
15 22
|
eqbrtrrd |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → { 𝑖 , 𝑗 } ≈ 2o ) |
24 |
|
pr2ne |
⊢ ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) → ( { 𝑖 , 𝑗 } ≈ 2o ↔ 𝑖 ≠ 𝑗 ) ) |
25 |
24
|
biimpa |
⊢ ( ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ { 𝑖 , 𝑗 } ≈ 2o ) → 𝑖 ≠ 𝑗 ) |
26 |
17 21 23 25
|
syl21anc |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑖 ≠ 𝑗 ) |
27 |
|
simplr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
28 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝐷 ∈ 𝑉 ) |
29 |
|
eqid |
⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) |
30 |
29
|
pmtrval |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑝 ⊆ 𝐷 ∧ 𝑝 ≈ 2o ) → ( ( pmTrsp ‘ 𝐷 ) ‘ 𝑝 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
31 |
28 12 22 30
|
syl3anc |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → ( ( pmTrsp ‘ 𝐷 ) ‘ 𝑝 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
32 |
15
|
fveq2d |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → ( ( pmTrsp ‘ 𝐷 ) ‘ 𝑝 ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑖 , 𝑗 } ) ) |
33 |
27 31 32
|
3eqtr2d |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑃 = ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑖 , 𝑗 } ) ) |
34 |
2 28 17 21 26 29
|
cycpm2tr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑖 , 𝑗 } ) ) |
35 |
33 34
|
eqtr4d |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) |
36 |
26 35
|
jca |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) |
37 |
17 21 36
|
jca31 |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∧ 𝑝 = { 𝑖 , 𝑗 } ) → ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) |
38 |
37
|
ex |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ( 𝑝 = { 𝑖 , 𝑗 } → ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) ) |
39 |
38
|
2eximdv |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ( ∃ 𝑖 ∃ 𝑗 𝑝 = { 𝑖 , 𝑗 } → ∃ 𝑖 ∃ 𝑗 ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) ) |
40 |
9 39
|
mpd |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ∃ 𝑖 ∃ 𝑗 ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) |
41 |
|
r2ex |
⊢ ( ∃ 𝑖 ∈ 𝐷 ∃ 𝑗 ∈ 𝐷 ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ↔ ∃ 𝑖 ∃ 𝑗 ( ( 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) ∧ ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) |
42 |
40 41
|
sylibr |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) ∧ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) ∧ 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ∃ 𝑖 ∈ 𝐷 ∃ 𝑗 ∈ 𝐷 ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) |
43 |
|
simpr |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → 𝑃 ∈ 𝑇 ) |
44 |
29
|
pmtrfval |
⊢ ( 𝐷 ∈ 𝑉 → ( pmTrsp ‘ 𝐷 ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → ( pmTrsp ‘ 𝐷 ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
46 |
45
|
rneqd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → ran ( pmTrsp ‘ 𝐷 ) = ran ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
47 |
1 46
|
eqtrid |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → 𝑇 = ran ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
48 |
43 47
|
eleqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → 𝑃 ∈ ran ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
49 |
|
eqid |
⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
50 |
49
|
elrnmpt |
⊢ ( 𝑃 ∈ 𝑇 → ( 𝑃 ∈ ran ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ↔ ∃ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
51 |
50
|
adantl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → ( 𝑃 ∈ ran ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ↔ ∃ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
52 |
48 51
|
mpbid |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → ∃ 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } 𝑃 = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
53 |
42 52
|
r19.29a |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇 ) → ∃ 𝑖 ∈ 𝐷 ∃ 𝑗 ∈ 𝐷 ( 𝑖 ≠ 𝑗 ∧ 𝑃 = ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) |