| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trsp2cyc.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 2 |  | trsp2cyc.c | ⊢ 𝐶  =  ( toCyc ‘ 𝐷 ) | 
						
							| 3 |  | simplr | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  →  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑦  =  𝑝  →  ( 𝑦  ≈  2o  ↔  𝑝  ≈  2o ) ) | 
						
							| 5 | 4 | elrab | ⊢ ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o }  ↔  ( 𝑝  ∈  𝒫  𝐷  ∧  𝑝  ≈  2o ) ) | 
						
							| 6 | 3 5 | sylib | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  →  ( 𝑝  ∈  𝒫  𝐷  ∧  𝑝  ≈  2o ) ) | 
						
							| 7 | 6 | simprd | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  →  𝑝  ≈  2o ) | 
						
							| 8 |  | en2 | ⊢ ( 𝑝  ≈  2o  →  ∃ 𝑖 ∃ 𝑗 𝑝  =  { 𝑖 ,  𝑗 } ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  →  ∃ 𝑖 ∃ 𝑗 𝑝  =  { 𝑖 ,  𝑗 } ) | 
						
							| 10 | 6 | simpld | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  →  𝑝  ∈  𝒫  𝐷 ) | 
						
							| 11 | 10 | elpwid | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  →  𝑝  ⊆  𝐷 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝑝  ⊆  𝐷 ) | 
						
							| 13 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 14 | 13 | prid1 | ⊢ 𝑖  ∈  { 𝑖 ,  𝑗 } | 
						
							| 15 |  | simpr | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝑝  =  { 𝑖 ,  𝑗 } ) | 
						
							| 16 | 14 15 | eleqtrrid | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝑖  ∈  𝑝 ) | 
						
							| 17 | 12 16 | sseldd | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝑖  ∈  𝐷 ) | 
						
							| 18 |  | vex | ⊢ 𝑗  ∈  V | 
						
							| 19 | 18 | prid2 | ⊢ 𝑗  ∈  { 𝑖 ,  𝑗 } | 
						
							| 20 | 19 15 | eleqtrrid | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝑗  ∈  𝑝 ) | 
						
							| 21 | 12 20 | sseldd | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝑗  ∈  𝐷 ) | 
						
							| 22 | 7 | adantr | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝑝  ≈  2o ) | 
						
							| 23 | 15 22 | eqbrtrrd | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  { 𝑖 ,  𝑗 }  ≈  2o ) | 
						
							| 24 |  | pr2ne | ⊢ ( ( 𝑖  ∈  𝐷  ∧  𝑗  ∈  𝐷 )  →  ( { 𝑖 ,  𝑗 }  ≈  2o  ↔  𝑖  ≠  𝑗 ) ) | 
						
							| 25 | 24 | biimpa | ⊢ ( ( ( 𝑖  ∈  𝐷  ∧  𝑗  ∈  𝐷 )  ∧  { 𝑖 ,  𝑗 }  ≈  2o )  →  𝑖  ≠  𝑗 ) | 
						
							| 26 | 17 21 23 25 | syl21anc | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝑖  ≠  𝑗 ) | 
						
							| 27 |  | simplr | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) | 
						
							| 28 |  | simp-4l | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝐷  ∈  𝑉 ) | 
						
							| 29 |  | eqid | ⊢ ( pmTrsp ‘ 𝐷 )  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 30 | 29 | pmtrval | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑝  ⊆  𝐷  ∧  𝑝  ≈  2o )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ 𝑝 )  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) | 
						
							| 31 | 28 12 22 30 | syl3anc | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ 𝑝 )  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) | 
						
							| 32 | 15 | fveq2d | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ 𝑝 )  =  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑖 ,  𝑗 } ) ) | 
						
							| 33 | 27 31 32 | 3eqtr2d | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝑃  =  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑖 ,  𝑗 } ) ) | 
						
							| 34 | 2 28 17 21 26 29 | cycpm2tr | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 )  =  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑖 ,  𝑗 } ) ) | 
						
							| 35 | 33 34 | eqtr4d | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  𝑃  =  ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) | 
						
							| 36 | 26 35 | jca | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  ( 𝑖  ≠  𝑗  ∧  𝑃  =  ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) | 
						
							| 37 | 17 21 36 | jca31 | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ∧  𝑝  =  { 𝑖 ,  𝑗 } )  →  ( ( 𝑖  ∈  𝐷  ∧  𝑗  ∈  𝐷 )  ∧  ( 𝑖  ≠  𝑗  ∧  𝑃  =  ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) | 
						
							| 38 | 37 | ex | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  →  ( 𝑝  =  { 𝑖 ,  𝑗 }  →  ( ( 𝑖  ∈  𝐷  ∧  𝑗  ∈  𝐷 )  ∧  ( 𝑖  ≠  𝑗  ∧  𝑃  =  ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) ) | 
						
							| 39 | 38 | 2eximdv | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  →  ( ∃ 𝑖 ∃ 𝑗 𝑝  =  { 𝑖 ,  𝑗 }  →  ∃ 𝑖 ∃ 𝑗 ( ( 𝑖  ∈  𝐷  ∧  𝑗  ∈  𝐷 )  ∧  ( 𝑖  ≠  𝑗  ∧  𝑃  =  ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) ) | 
						
							| 40 | 9 39 | mpd | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  →  ∃ 𝑖 ∃ 𝑗 ( ( 𝑖  ∈  𝐷  ∧  𝑗  ∈  𝐷 )  ∧  ( 𝑖  ≠  𝑗  ∧  𝑃  =  ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) | 
						
							| 41 |  | r2ex | ⊢ ( ∃ 𝑖  ∈  𝐷 ∃ 𝑗  ∈  𝐷 ( 𝑖  ≠  𝑗  ∧  𝑃  =  ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) )  ↔  ∃ 𝑖 ∃ 𝑗 ( ( 𝑖  ∈  𝐷  ∧  𝑗  ∈  𝐷 )  ∧  ( 𝑖  ≠  𝑗  ∧  𝑃  =  ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) ) | 
						
							| 42 | 40 41 | sylibr | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  ∧  𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } )  ∧  𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  →  ∃ 𝑖  ∈  𝐷 ∃ 𝑗  ∈  𝐷 ( 𝑖  ≠  𝑗  ∧  𝑃  =  ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) | 
						
							| 43 |  | simpr | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  →  𝑃  ∈  𝑇 ) | 
						
							| 44 | 29 | pmtrfval | ⊢ ( 𝐷  ∈  𝑉  →  ( pmTrsp ‘ 𝐷 )  =  ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  →  ( pmTrsp ‘ 𝐷 )  =  ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) ) | 
						
							| 46 | 45 | rneqd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  →  ran  ( pmTrsp ‘ 𝐷 )  =  ran  ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) ) | 
						
							| 47 | 1 46 | eqtrid | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  →  𝑇  =  ran  ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) ) | 
						
							| 48 | 43 47 | eleqtrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  →  𝑃  ∈  ran  ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) ) | 
						
							| 49 |  | eqid | ⊢ ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  =  ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) | 
						
							| 50 | 49 | elrnmpt | ⊢ ( 𝑃  ∈  𝑇  →  ( 𝑃  ∈  ran  ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ↔  ∃ 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } 𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  →  ( 𝑃  ∈  ran  ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  ↔  ∃ 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } 𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) ) | 
						
							| 52 | 48 51 | mpbid | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  →  ∃ 𝑝  ∈  { 𝑦  ∈  𝒫  𝐷  ∣  𝑦  ≈  2o } 𝑃  =  ( 𝑧  ∈  𝐷  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) | 
						
							| 53 | 42 52 | r19.29a | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  𝑇 )  →  ∃ 𝑖  ∈  𝐷 ∃ 𝑗  ∈  𝐷 ( 𝑖  ≠  𝑗  ∧  𝑃  =  ( 𝐶 ‘ 〈“ 𝑖 𝑗 ”〉 ) ) ) |