| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmco2.c |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
| 2 |
|
cycpmco2.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 3 |
|
cycpmco2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 4 |
|
cycpmco2.w |
⊢ ( 𝜑 → 𝑊 ∈ dom 𝑀 ) |
| 5 |
|
cycpmco2.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
| 6 |
|
cycpmco2.j |
⊢ ( 𝜑 → 𝐽 ∈ ran 𝑊 ) |
| 7 |
|
cycpmco2.e |
⊢ 𝐸 = ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) |
| 8 |
|
cycpmco2.1 |
⊢ 𝑈 = ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) |
| 9 |
|
ssrab2 |
⊢ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⊆ Word 𝐷 |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 11 |
1 2 10
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
| 13 |
12
|
fdmd |
⊢ ( 𝜑 → dom 𝑀 = { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 14 |
4 13
|
eleqtrd |
⊢ ( 𝜑 → 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 15 |
9 14
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
| 16 |
|
pfxcl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ) |
| 18 |
5
|
eldifad |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
| 19 |
18
|
s1cld |
⊢ ( 𝜑 → 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) |
| 20 |
|
ccatcl |
⊢ ( ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ) |
| 21 |
17 19 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ) |
| 22 |
|
swrdcl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) |
| 23 |
15 22
|
syl |
⊢ ( 𝜑 → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) |
| 24 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
| 25 |
|
dmeq |
⊢ ( 𝑤 = 𝑊 → dom 𝑤 = dom 𝑊 ) |
| 26 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝐷 = 𝐷 ) |
| 27 |
24 25 26
|
f1eq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
| 28 |
27
|
elrab |
⊢ ( 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
| 29 |
14 28
|
sylib |
⊢ ( 𝜑 → ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
| 30 |
29
|
simprd |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
| 31 |
|
f1cnv |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
| 32 |
|
f1of |
⊢ ( ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
| 33 |
30 31 32
|
3syl |
⊢ ( 𝜑 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
| 34 |
33 6
|
ffvelcdmd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ dom 𝑊 ) |
| 35 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐷 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 36 |
15 35
|
syl |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 37 |
34 36
|
eleqtrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 38 |
|
fzofzp1 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 39 |
37 38
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 40 |
7 39
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 41 |
15 30 40
|
pfxf1 |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐸 ) : dom ( 𝑊 prefix 𝐸 ) –1-1→ 𝐷 ) |
| 42 |
18
|
s1f1 |
⊢ ( 𝜑 → 〈“ 𝐼 ”〉 : dom 〈“ 𝐼 ”〉 –1-1→ 𝐷 ) |
| 43 |
|
s1rn |
⊢ ( 𝐼 ∈ 𝐷 → ran 〈“ 𝐼 ”〉 = { 𝐼 } ) |
| 44 |
18 43
|
syl |
⊢ ( 𝜑 → ran 〈“ 𝐼 ”〉 = { 𝐼 } ) |
| 45 |
44
|
ineq2d |
⊢ ( 𝜑 → ( ran ( 𝑊 prefix 𝐸 ) ∩ ran 〈“ 𝐼 ”〉 ) = ( ran ( 𝑊 prefix 𝐸 ) ∩ { 𝐼 } ) ) |
| 46 |
|
pfxrn2 |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ran ( 𝑊 prefix 𝐸 ) ⊆ ran 𝑊 ) |
| 47 |
15 40 46
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝑊 prefix 𝐸 ) ⊆ ran 𝑊 ) |
| 48 |
47
|
ssrind |
⊢ ( 𝜑 → ( ran ( 𝑊 prefix 𝐸 ) ∩ { 𝐼 } ) ⊆ ( ran 𝑊 ∩ { 𝐼 } ) ) |
| 49 |
5
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝐼 ∈ ran 𝑊 ) |
| 50 |
|
disjsn |
⊢ ( ( ran 𝑊 ∩ { 𝐼 } ) = ∅ ↔ ¬ 𝐼 ∈ ran 𝑊 ) |
| 51 |
49 50
|
sylibr |
⊢ ( 𝜑 → ( ran 𝑊 ∩ { 𝐼 } ) = ∅ ) |
| 52 |
48 51
|
sseqtrd |
⊢ ( 𝜑 → ( ran ( 𝑊 prefix 𝐸 ) ∩ { 𝐼 } ) ⊆ ∅ ) |
| 53 |
|
ss0 |
⊢ ( ( ran ( 𝑊 prefix 𝐸 ) ∩ { 𝐼 } ) ⊆ ∅ → ( ran ( 𝑊 prefix 𝐸 ) ∩ { 𝐼 } ) = ∅ ) |
| 54 |
52 53
|
syl |
⊢ ( 𝜑 → ( ran ( 𝑊 prefix 𝐸 ) ∩ { 𝐼 } ) = ∅ ) |
| 55 |
45 54
|
eqtrd |
⊢ ( 𝜑 → ( ran ( 𝑊 prefix 𝐸 ) ∩ ran 〈“ 𝐼 ”〉 ) = ∅ ) |
| 56 |
3 17 19 41 42 55
|
ccatf1 |
⊢ ( 𝜑 → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) : dom ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) –1-1→ 𝐷 ) |
| 57 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 58 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 59 |
58
|
biimpi |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 60 |
15 57 59
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 61 |
15 40 60 30
|
swrdf1 |
⊢ ( 𝜑 → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) : dom ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) –1-1→ 𝐷 ) |
| 62 |
|
ccatrn |
⊢ ( ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) → ran ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) = ( ran ( 𝑊 prefix 𝐸 ) ∪ ran 〈“ 𝐼 ”〉 ) ) |
| 63 |
17 19 62
|
syl2anc |
⊢ ( 𝜑 → ran ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) = ( ran ( 𝑊 prefix 𝐸 ) ∪ ran 〈“ 𝐼 ”〉 ) ) |
| 64 |
63
|
ineq1d |
⊢ ( 𝜑 → ( ran ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ran ( 𝑊 prefix 𝐸 ) ∪ ran 〈“ 𝐼 ”〉 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
| 65 |
|
indir |
⊢ ( ( ran ( 𝑊 prefix 𝐸 ) ∪ ran 〈“ 𝐼 ”〉 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ran ( 𝑊 prefix 𝐸 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ∪ ( ran 〈“ 𝐼 ”〉 ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
| 66 |
64 65
|
eqtrdi |
⊢ ( 𝜑 → ( ran ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ran ( 𝑊 prefix 𝐸 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ∪ ( ran 〈“ 𝐼 ”〉 ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
| 67 |
|
fz0ssnn0 |
⊢ ( 0 ... ( ♯ ‘ 𝑊 ) ) ⊆ ℕ0 |
| 68 |
67 40
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
| 69 |
|
pfxval |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ℕ0 ) → ( 𝑊 prefix 𝐸 ) = ( 𝑊 substr 〈 0 , 𝐸 〉 ) ) |
| 70 |
15 68 69
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐸 ) = ( 𝑊 substr 〈 0 , 𝐸 〉 ) ) |
| 71 |
70
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑊 prefix 𝐸 ) = ran ( 𝑊 substr 〈 0 , 𝐸 〉 ) ) |
| 72 |
71
|
ineq1d |
⊢ ( 𝜑 → ( ran ( 𝑊 prefix 𝐸 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ran ( 𝑊 substr 〈 0 , 𝐸 〉 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
| 73 |
|
0elfz |
⊢ ( 𝐸 ∈ ℕ0 → 0 ∈ ( 0 ... 𝐸 ) ) |
| 74 |
68 73
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝐸 ) ) |
| 75 |
|
elfzuz3 |
⊢ ( 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐸 ) ) |
| 76 |
|
eluzfz1 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐸 ) → 𝐸 ∈ ( 𝐸 ... ( ♯ ‘ 𝑊 ) ) ) |
| 77 |
40 75 76
|
3syl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐸 ... ( ♯ ‘ 𝑊 ) ) ) |
| 78 |
|
eluzfz2 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐸 ) → ( ♯ ‘ 𝑊 ) ∈ ( 𝐸 ... ( ♯ ‘ 𝑊 ) ) ) |
| 79 |
40 75 78
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ( 𝐸 ... ( ♯ ‘ 𝑊 ) ) ) |
| 80 |
15 74 40 30 77 79
|
swrdrndisj |
⊢ ( 𝜑 → ( ran ( 𝑊 substr 〈 0 , 𝐸 〉 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ∅ ) |
| 81 |
72 80
|
eqtrd |
⊢ ( 𝜑 → ( ran ( 𝑊 prefix 𝐸 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ∅ ) |
| 82 |
|
incom |
⊢ ( ran 〈“ 𝐼 ”〉 ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∩ ran 〈“ 𝐼 ”〉 ) |
| 83 |
44
|
ineq2d |
⊢ ( 𝜑 → ( ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∩ ran 〈“ 𝐼 ”〉 ) = ( ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∩ { 𝐼 } ) ) |
| 84 |
|
swrdrn2 |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ⊆ ran 𝑊 ) |
| 85 |
15 40 60 84
|
syl3anc |
⊢ ( 𝜑 → ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ⊆ ran 𝑊 ) |
| 86 |
85
|
ssrind |
⊢ ( 𝜑 → ( ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∩ { 𝐼 } ) ⊆ ( ran 𝑊 ∩ { 𝐼 } ) ) |
| 87 |
86 51
|
sseqtrd |
⊢ ( 𝜑 → ( ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∩ { 𝐼 } ) ⊆ ∅ ) |
| 88 |
|
ss0 |
⊢ ( ( ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∩ { 𝐼 } ) ⊆ ∅ → ( ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∩ { 𝐼 } ) = ∅ ) |
| 89 |
87 88
|
syl |
⊢ ( 𝜑 → ( ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∩ { 𝐼 } ) = ∅ ) |
| 90 |
83 89
|
eqtrd |
⊢ ( 𝜑 → ( ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∩ ran 〈“ 𝐼 ”〉 ) = ∅ ) |
| 91 |
82 90
|
eqtrid |
⊢ ( 𝜑 → ( ran 〈“ 𝐼 ”〉 ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ∅ ) |
| 92 |
81 91
|
uneq12d |
⊢ ( 𝜑 → ( ( ran ( 𝑊 prefix 𝐸 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ∪ ( ran 〈“ 𝐼 ”〉 ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ∅ ∪ ∅ ) ) |
| 93 |
|
unidm |
⊢ ( ∅ ∪ ∅ ) = ∅ |
| 94 |
93
|
a1i |
⊢ ( 𝜑 → ( ∅ ∪ ∅ ) = ∅ ) |
| 95 |
66 92 94
|
3eqtrd |
⊢ ( 𝜑 → ( ran ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∩ ran ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ∅ ) |
| 96 |
3 21 23 56 61 95
|
ccatf1 |
⊢ ( 𝜑 → ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) : dom ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) –1-1→ 𝐷 ) |
| 97 |
|
ovexd |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ V ) |
| 98 |
7 97
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
| 99 |
|
splval |
⊢ ( ( 𝑊 ∈ dom 𝑀 ∧ ( 𝐸 ∈ V ∧ 𝐸 ∈ V ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) ) → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
| 100 |
4 98 98 19 99
|
syl13anc |
⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
| 101 |
8 100
|
eqtrid |
⊢ ( 𝜑 → 𝑈 = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
| 102 |
101
|
dmeqd |
⊢ ( 𝜑 → dom 𝑈 = dom ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
| 103 |
|
eqidd |
⊢ ( 𝜑 → 𝐷 = 𝐷 ) |
| 104 |
101 102 103
|
f1eq123d |
⊢ ( 𝜑 → ( 𝑈 : dom 𝑈 –1-1→ 𝐷 ↔ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) : dom ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) –1-1→ 𝐷 ) ) |
| 105 |
96 104
|
mpbird |
⊢ ( 𝜑 → 𝑈 : dom 𝑈 –1-1→ 𝐷 ) |