Step |
Hyp |
Ref |
Expression |
1 |
|
tocycf.c |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
2 |
|
tocycf.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
3 |
|
tocycf.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
1
|
tocycval |
⊢ ( 𝐷 ∈ 𝑉 → 𝐶 = ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↦ ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∪ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) ) ) |
5 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → 𝑢 = ∅ ) |
6 |
5
|
rneqd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ran 𝑢 = ran ∅ ) |
7 |
|
rn0 |
⊢ ran ∅ = ∅ |
8 |
6 7
|
eqtrdi |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ran 𝑢 = ∅ ) |
9 |
8
|
difeq2d |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ( 𝐷 ∖ ran 𝑢 ) = ( 𝐷 ∖ ∅ ) ) |
10 |
|
dif0 |
⊢ ( 𝐷 ∖ ∅ ) = 𝐷 |
11 |
9 10
|
eqtrdi |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ( 𝐷 ∖ ran 𝑢 ) = 𝐷 ) |
12 |
11
|
reseq2d |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( I ↾ 𝐷 ) ) |
13 |
5
|
cnveqd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ◡ 𝑢 = ◡ ∅ ) |
14 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
15 |
13 14
|
eqtrdi |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ◡ 𝑢 = ∅ ) |
16 |
15
|
coeq2d |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) = ( ( 𝑢 cyclShift 1 ) ∘ ∅ ) ) |
17 |
|
co02 |
⊢ ( ( 𝑢 cyclShift 1 ) ∘ ∅ ) = ∅ |
18 |
16 17
|
eqtrdi |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) = ∅ ) |
19 |
12 18
|
uneq12d |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∪ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) = ( ( I ↾ 𝐷 ) ∪ ∅ ) ) |
20 |
|
un0 |
⊢ ( ( I ↾ 𝐷 ) ∪ ∅ ) = ( I ↾ 𝐷 ) |
21 |
19 20
|
eqtrdi |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∪ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) = ( I ↾ 𝐷 ) ) |
22 |
2
|
idresperm |
⊢ ( 𝐷 ∈ 𝑉 → ( I ↾ 𝐷 ) ∈ ( Base ‘ 𝑆 ) ) |
23 |
22 3
|
eleqtrrdi |
⊢ ( 𝐷 ∈ 𝑉 → ( I ↾ 𝐷 ) ∈ 𝐵 ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ( I ↾ 𝐷 ) ∈ 𝐵 ) |
25 |
21 24
|
eqeltrd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 = ∅ ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∪ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) ∈ 𝐵 ) |
26 |
|
difexg |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝐷 ∖ ran 𝑢 ) ∈ V ) |
27 |
26
|
resiexd |
⊢ ( 𝐷 ∈ 𝑉 → ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∈ V ) |
28 |
|
ovex |
⊢ ( 𝑢 cyclShift 1 ) ∈ V |
29 |
|
vex |
⊢ 𝑢 ∈ V |
30 |
29
|
cnvex |
⊢ ◡ 𝑢 ∈ V |
31 |
28 30
|
coex |
⊢ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ∈ V |
32 |
|
unexg |
⊢ ( ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∈ V ∧ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ∈ V ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∪ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) ∈ V ) |
33 |
27 31 32
|
sylancl |
⊢ ( 𝐷 ∈ 𝑉 → ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∪ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) ∈ V ) |
34 |
33
|
adantr |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∪ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) ∈ V ) |
35 |
4 34
|
fvmpt2d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) → ( 𝐶 ‘ 𝑢 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∪ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 ≠ ∅ ) → ( 𝐶 ‘ 𝑢 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∪ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) ) |
37 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 ≠ ∅ ) → 𝐷 ∈ 𝑉 ) |
38 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 ≠ ∅ ) → 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
39 |
|
id |
⊢ ( 𝑤 = 𝑢 → 𝑤 = 𝑢 ) |
40 |
|
dmeq |
⊢ ( 𝑤 = 𝑢 → dom 𝑤 = dom 𝑢 ) |
41 |
|
eqidd |
⊢ ( 𝑤 = 𝑢 → 𝐷 = 𝐷 ) |
42 |
39 40 41
|
f1eq123d |
⊢ ( 𝑤 = 𝑢 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
43 |
42
|
elrab |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑢 ∈ Word 𝐷 ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
44 |
38 43
|
sylib |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 ≠ ∅ ) → ( 𝑢 ∈ Word 𝐷 ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
45 |
44
|
simpld |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 ≠ ∅ ) → 𝑢 ∈ Word 𝐷 ) |
46 |
44
|
simprd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 ≠ ∅ ) → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
47 |
1 37 45 46 2
|
cycpmcl |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 ≠ ∅ ) → ( 𝐶 ‘ 𝑢 ) ∈ ( Base ‘ 𝑆 ) ) |
48 |
47 3
|
eleqtrrdi |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 ≠ ∅ ) → ( 𝐶 ‘ 𝑢 ) ∈ 𝐵 ) |
49 |
36 48
|
eqeltrrd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) ∧ 𝑢 ≠ ∅ ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∪ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) ∈ 𝐵 ) |
50 |
25 49
|
pm2.61dane |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∪ ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) ∈ 𝐵 ) |
51 |
4 50
|
fmpt3d |
⊢ ( 𝐷 ∈ 𝑉 → 𝐶 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ 𝐵 ) |