Step |
Hyp |
Ref |
Expression |
1 |
|
tocyc01.1 |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
2 |
|
simpl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝐷 ∈ 𝑉 ) |
3 |
|
simpr |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) |
4 |
3
|
elin1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑊 ∈ dom 𝐶 ) |
5 |
|
eqid |
⊢ ( SymGrp ‘ 𝐷 ) = ( SymGrp ‘ 𝐷 ) |
6 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) = ( Base ‘ ( SymGrp ‘ 𝐷 ) ) |
7 |
1 5 6
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝐶 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) |
8 |
|
fdm |
⊢ ( 𝐶 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) → dom 𝐶 = { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
9 |
2 7 8
|
3syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → dom 𝐶 = { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
10 |
4 9
|
eleqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
11 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
12 |
|
dmeq |
⊢ ( 𝑤 = 𝑊 → dom 𝑤 = dom 𝑊 ) |
13 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝐷 = 𝐷 ) |
14 |
11 12 13
|
f1eq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
15 |
14
|
elrab |
⊢ ( 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
16 |
10 15
|
sylib |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
17 |
16
|
simpld |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑊 ∈ Word 𝐷 ) |
18 |
16
|
simprd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
19 |
1 2 17 18
|
tocycfv |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( 𝐶 ‘ 𝑊 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 0 ) → ( 𝐶 ‘ 𝑊 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
21 |
|
hasheq0 |
⊢ ( 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) → ( ( ♯ ‘ 𝑊 ) = 0 ↔ 𝑊 = ∅ ) ) |
22 |
3 21
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( ( ♯ ‘ 𝑊 ) = 0 ↔ 𝑊 = ∅ ) ) |
23 |
22
|
biimpa |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 0 ) → 𝑊 = ∅ ) |
24 |
|
rneq |
⊢ ( 𝑊 = ∅ → ran 𝑊 = ran ∅ ) |
25 |
|
rn0 |
⊢ ran ∅ = ∅ |
26 |
24 25
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ran 𝑊 = ∅ ) |
27 |
26
|
difeq2d |
⊢ ( 𝑊 = ∅ → ( 𝐷 ∖ ran 𝑊 ) = ( 𝐷 ∖ ∅ ) ) |
28 |
|
dif0 |
⊢ ( 𝐷 ∖ ∅ ) = 𝐷 |
29 |
27 28
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( 𝐷 ∖ ran 𝑊 ) = 𝐷 ) |
30 |
29
|
reseq2d |
⊢ ( 𝑊 = ∅ → ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) = ( I ↾ 𝐷 ) ) |
31 |
|
cnveq |
⊢ ( 𝑊 = ∅ → ◡ 𝑊 = ◡ ∅ ) |
32 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
33 |
31 32
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ◡ 𝑊 = ∅ ) |
34 |
33
|
coeq2d |
⊢ ( 𝑊 = ∅ → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ∘ ∅ ) ) |
35 |
|
co02 |
⊢ ( ( 𝑊 cyclShift 1 ) ∘ ∅ ) = ∅ |
36 |
34 35
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) = ∅ ) |
37 |
30 36
|
uneq12d |
⊢ ( 𝑊 = ∅ → ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) = ( ( I ↾ 𝐷 ) ∪ ∅ ) ) |
38 |
|
un0 |
⊢ ( ( I ↾ 𝐷 ) ∪ ∅ ) = ( I ↾ 𝐷 ) |
39 |
37 38
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) = ( I ↾ 𝐷 ) ) |
40 |
23 39
|
syl |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 0 ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) = ( I ↾ 𝐷 ) ) |
41 |
20 40
|
eqtrd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 0 ) → ( 𝐶 ‘ 𝑊 ) = ( I ↾ 𝐷 ) ) |
42 |
19
|
adantr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝐶 ‘ 𝑊 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
43 |
17
|
adantr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → 𝑊 ∈ Word 𝐷 ) |
44 |
|
1zzd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → 1 ∈ ℤ ) |
45 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( ♯ ‘ 𝑊 ) = 1 ) |
46 |
|
1cshid |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑊 cyclShift 1 ) = 𝑊 ) |
47 |
43 44 45 46
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑊 cyclShift 1 ) = 𝑊 ) |
48 |
47
|
coeq1d |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) = ( 𝑊 ∘ ◡ 𝑊 ) ) |
49 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝐷 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 ) |
50 |
|
ffun |
⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 → Fun 𝑊 ) |
51 |
|
funcocnv2 |
⊢ ( Fun 𝑊 → ( 𝑊 ∘ ◡ 𝑊 ) = ( I ↾ ran 𝑊 ) ) |
52 |
43 49 50 51
|
4syl |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑊 ∘ ◡ 𝑊 ) = ( I ↾ ran 𝑊 ) ) |
53 |
48 52
|
eqtrd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) = ( I ↾ ran 𝑊 ) ) |
54 |
53
|
uneq2d |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( I ↾ ran 𝑊 ) ) ) |
55 |
|
resundi |
⊢ ( I ↾ ( ( 𝐷 ∖ ran 𝑊 ) ∪ ran 𝑊 ) ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( I ↾ ran 𝑊 ) ) |
56 |
|
frn |
⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 → ran 𝑊 ⊆ 𝐷 ) |
57 |
|
undifr |
⊢ ( ran 𝑊 ⊆ 𝐷 ↔ ( ( 𝐷 ∖ ran 𝑊 ) ∪ ran 𝑊 ) = 𝐷 ) |
58 |
56 57
|
sylib |
⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 → ( ( 𝐷 ∖ ran 𝑊 ) ∪ ran 𝑊 ) = 𝐷 ) |
59 |
43 49 58
|
3syl |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( ( 𝐷 ∖ ran 𝑊 ) ∪ ran 𝑊 ) = 𝐷 ) |
60 |
59
|
reseq2d |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( I ↾ ( ( 𝐷 ∖ ran 𝑊 ) ∪ ran 𝑊 ) ) = ( I ↾ 𝐷 ) ) |
61 |
55 60
|
eqtr3id |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( I ↾ ran 𝑊 ) ) = ( I ↾ 𝐷 ) ) |
62 |
42 54 61
|
3eqtrd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝐶 ‘ 𝑊 ) = ( I ↾ 𝐷 ) ) |
63 |
3
|
elin2d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → 𝑊 ∈ ( ◡ ♯ “ { 0 , 1 } ) ) |
64 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
65 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
66 |
|
elpreima |
⊢ ( ♯ Fn V → ( 𝑊 ∈ ( ◡ ♯ “ { 0 , 1 } ) ↔ ( 𝑊 ∈ V ∧ ( ♯ ‘ 𝑊 ) ∈ { 0 , 1 } ) ) ) |
67 |
64 65 66
|
mp2b |
⊢ ( 𝑊 ∈ ( ◡ ♯ “ { 0 , 1 } ) ↔ ( 𝑊 ∈ V ∧ ( ♯ ‘ 𝑊 ) ∈ { 0 , 1 } ) ) |
68 |
63 67
|
sylib |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( 𝑊 ∈ V ∧ ( ♯ ‘ 𝑊 ) ∈ { 0 , 1 } ) ) |
69 |
68
|
simprd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( ♯ ‘ 𝑊 ) ∈ { 0 , 1 } ) |
70 |
|
elpri |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ { 0 , 1 } → ( ( ♯ ‘ 𝑊 ) = 0 ∨ ( ♯ ‘ 𝑊 ) = 1 ) ) |
71 |
69 70
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( ( ♯ ‘ 𝑊 ) = 0 ∨ ( ♯ ‘ 𝑊 ) = 1 ) ) |
72 |
41 62 71
|
mpjaodan |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ ( dom 𝐶 ∩ ( ◡ ♯ “ { 0 , 1 } ) ) ) → ( 𝐶 ‘ 𝑊 ) = ( I ↾ 𝐷 ) ) |