| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tocyc01.1 | ⊢ 𝐶  =  ( toCyc ‘ 𝐷 ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  𝐷  ∈  𝑉 ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) ) | 
						
							| 4 | 3 | elin1d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  𝑊  ∈  dom  𝐶 ) | 
						
							| 5 |  | eqid | ⊢ ( SymGrp ‘ 𝐷 )  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ ( SymGrp ‘ 𝐷 ) )  =  ( Base ‘ ( SymGrp ‘ 𝐷 ) ) | 
						
							| 7 | 1 5 6 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝐶 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) | 
						
							| 8 |  | fdm | ⊢ ( 𝐶 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ ( SymGrp ‘ 𝐷 ) )  →  dom  𝐶  =  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 9 | 2 7 8 | 3syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  dom  𝐶  =  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 10 | 4 9 | eleqtrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 11 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 12 |  | dmeq | ⊢ ( 𝑤  =  𝑊  →  dom  𝑤  =  dom  𝑊 ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝐷  =  𝐷 ) | 
						
							| 14 | 11 12 13 | f1eq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 15 | 14 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 16 | 10 15 | sylib | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 17 | 16 | simpld | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 18 | 16 | simprd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 19 | 1 2 17 18 | tocycfv | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  ( 𝐶 ‘ 𝑊 )  =  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  0 )  →  ( 𝐶 ‘ 𝑊 )  =  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) ) | 
						
							| 21 |  | hasheq0 | ⊢ ( 𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) )  →  ( ( ♯ ‘ 𝑊 )  =  0  ↔  𝑊  =  ∅ ) ) | 
						
							| 22 | 3 21 | syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  ( ( ♯ ‘ 𝑊 )  =  0  ↔  𝑊  =  ∅ ) ) | 
						
							| 23 | 22 | biimpa | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  0 )  →  𝑊  =  ∅ ) | 
						
							| 24 |  | rneq | ⊢ ( 𝑊  =  ∅  →  ran  𝑊  =  ran  ∅ ) | 
						
							| 25 |  | rn0 | ⊢ ran  ∅  =  ∅ | 
						
							| 26 | 24 25 | eqtrdi | ⊢ ( 𝑊  =  ∅  →  ran  𝑊  =  ∅ ) | 
						
							| 27 | 26 | difeq2d | ⊢ ( 𝑊  =  ∅  →  ( 𝐷  ∖  ran  𝑊 )  =  ( 𝐷  ∖  ∅ ) ) | 
						
							| 28 |  | dif0 | ⊢ ( 𝐷  ∖  ∅ )  =  𝐷 | 
						
							| 29 | 27 28 | eqtrdi | ⊢ ( 𝑊  =  ∅  →  ( 𝐷  ∖  ran  𝑊 )  =  𝐷 ) | 
						
							| 30 | 29 | reseq2d | ⊢ ( 𝑊  =  ∅  →  (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 31 |  | cnveq | ⊢ ( 𝑊  =  ∅  →  ◡ 𝑊  =  ◡ ∅ ) | 
						
							| 32 |  | cnv0 | ⊢ ◡ ∅  =  ∅ | 
						
							| 33 | 31 32 | eqtrdi | ⊢ ( 𝑊  =  ∅  →  ◡ 𝑊  =  ∅ ) | 
						
							| 34 | 33 | coeq2d | ⊢ ( 𝑊  =  ∅  →  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 )  =  ( ( 𝑊  cyclShift  1 )  ∘  ∅ ) ) | 
						
							| 35 |  | co02 | ⊢ ( ( 𝑊  cyclShift  1 )  ∘  ∅ )  =  ∅ | 
						
							| 36 | 34 35 | eqtrdi | ⊢ ( 𝑊  =  ∅  →  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 )  =  ∅ ) | 
						
							| 37 | 30 36 | uneq12d | ⊢ ( 𝑊  =  ∅  →  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) )  =  ( (  I   ↾  𝐷 )  ∪  ∅ ) ) | 
						
							| 38 |  | un0 | ⊢ ( (  I   ↾  𝐷 )  ∪  ∅ )  =  (  I   ↾  𝐷 ) | 
						
							| 39 | 37 38 | eqtrdi | ⊢ ( 𝑊  =  ∅  →  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 40 | 23 39 | syl | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  0 )  →  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 41 | 20 40 | eqtrd | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  0 )  →  ( 𝐶 ‘ 𝑊 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 42 | 19 | adantr | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝐶 ‘ 𝑊 )  =  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) ) | 
						
							| 43 | 17 | adantr | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 44 |  | 1zzd | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  1  ∈  ℤ ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( ♯ ‘ 𝑊 )  =  1 ) | 
						
							| 46 |  | 1cshid | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  1  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝑊  cyclShift  1 )  =  𝑊 ) | 
						
							| 47 | 43 44 45 46 | syl3anc | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝑊  cyclShift  1 )  =  𝑊 ) | 
						
							| 48 | 47 | coeq1d | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 )  =  ( 𝑊  ∘  ◡ 𝑊 ) ) | 
						
							| 49 |  | wrdf | ⊢ ( 𝑊  ∈  Word  𝐷  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 ) | 
						
							| 50 |  | ffun | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷  →  Fun  𝑊 ) | 
						
							| 51 |  | funcocnv2 | ⊢ ( Fun  𝑊  →  ( 𝑊  ∘  ◡ 𝑊 )  =  (  I   ↾  ran  𝑊 ) ) | 
						
							| 52 | 43 49 50 51 | 4syl | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝑊  ∘  ◡ 𝑊 )  =  (  I   ↾  ran  𝑊 ) ) | 
						
							| 53 | 48 52 | eqtrd | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 )  =  (  I   ↾  ran  𝑊 ) ) | 
						
							| 54 | 53 | uneq2d | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) )  =  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  (  I   ↾  ran  𝑊 ) ) ) | 
						
							| 55 |  | resundi | ⊢ (  I   ↾  ( ( 𝐷  ∖  ran  𝑊 )  ∪  ran  𝑊 ) )  =  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  (  I   ↾  ran  𝑊 ) ) | 
						
							| 56 |  | frn | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷  →  ran  𝑊  ⊆  𝐷 ) | 
						
							| 57 |  | undifr | ⊢ ( ran  𝑊  ⊆  𝐷  ↔  ( ( 𝐷  ∖  ran  𝑊 )  ∪  ran  𝑊 )  =  𝐷 ) | 
						
							| 58 | 56 57 | sylib | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷  →  ( ( 𝐷  ∖  ran  𝑊 )  ∪  ran  𝑊 )  =  𝐷 ) | 
						
							| 59 | 43 49 58 | 3syl | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( ( 𝐷  ∖  ran  𝑊 )  ∪  ran  𝑊 )  =  𝐷 ) | 
						
							| 60 | 59 | reseq2d | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  (  I   ↾  ( ( 𝐷  ∖  ran  𝑊 )  ∪  ran  𝑊 ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 61 | 55 60 | eqtr3id | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( (  I   ↾  ( 𝐷  ∖  ran  𝑊 ) )  ∪  (  I   ↾  ran  𝑊 ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 62 | 42 54 61 | 3eqtrd | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝐶 ‘ 𝑊 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 63 | 3 | elin2d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  𝑊  ∈  ( ◡ ♯  “  { 0 ,  1 } ) ) | 
						
							| 64 |  | hashf | ⊢ ♯ : V ⟶ ( ℕ0  ∪  { +∞ } ) | 
						
							| 65 |  | ffn | ⊢ ( ♯ : V ⟶ ( ℕ0  ∪  { +∞ } )  →  ♯  Fn  V ) | 
						
							| 66 |  | elpreima | ⊢ ( ♯  Fn  V  →  ( 𝑊  ∈  ( ◡ ♯  “  { 0 ,  1 } )  ↔  ( 𝑊  ∈  V  ∧  ( ♯ ‘ 𝑊 )  ∈  { 0 ,  1 } ) ) ) | 
						
							| 67 | 64 65 66 | mp2b | ⊢ ( 𝑊  ∈  ( ◡ ♯  “  { 0 ,  1 } )  ↔  ( 𝑊  ∈  V  ∧  ( ♯ ‘ 𝑊 )  ∈  { 0 ,  1 } ) ) | 
						
							| 68 | 63 67 | sylib | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  ( 𝑊  ∈  V  ∧  ( ♯ ‘ 𝑊 )  ∈  { 0 ,  1 } ) ) | 
						
							| 69 | 68 | simprd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  ( ♯ ‘ 𝑊 )  ∈  { 0 ,  1 } ) | 
						
							| 70 |  | elpri | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  { 0 ,  1 }  →  ( ( ♯ ‘ 𝑊 )  =  0  ∨  ( ♯ ‘ 𝑊 )  =  1 ) ) | 
						
							| 71 | 69 70 | syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  ( ( ♯ ‘ 𝑊 )  =  0  ∨  ( ♯ ‘ 𝑊 )  =  1 ) ) | 
						
							| 72 | 41 62 71 | mpjaodan | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  ( dom  𝐶  ∩  ( ◡ ♯  “  { 0 ,  1 } ) ) )  →  ( 𝐶 ‘ 𝑊 )  =  (  I   ↾  𝐷 ) ) |