Step |
Hyp |
Ref |
Expression |
1 |
|
cshwmodn |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
3 |
|
simp3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( ♯ ‘ 𝑊 ) = 1 ) |
4 |
3
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) = ( 𝑁 mod 1 ) ) |
5 |
|
zmod10 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 mod 1 ) = 0 ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑁 mod 1 ) = 0 ) |
7 |
4 6
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 cyclShift 0 ) ) |
9 |
|
cshw0 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
11 |
2 8 10
|
3eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑊 cyclShift 𝑁 ) = 𝑊 ) |