| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwmodn | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( ♯ ‘ 𝑊 )  =  1 ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  =  ( 𝑁  mod  1 ) ) | 
						
							| 5 |  | zmod10 | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  mod  1 )  =  0 ) | 
						
							| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝑁  mod  1 )  =  0 ) | 
						
							| 7 | 4 6 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  =  0 ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝑊  cyclShift  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊  cyclShift  0 ) ) | 
						
							| 9 |  | cshw0 | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  cyclShift  0 )  =  𝑊 ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝑊  cyclShift  0 )  =  𝑊 ) | 
						
							| 11 | 2 8 10 | 3eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  =  1 )  →  ( 𝑊  cyclShift  𝑁 )  =  𝑊 ) |