| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwmodn |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( W e. Word V /\ N e. ZZ /\ ( # ` W ) = 1 ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) | 
						
							| 3 |  | simp3 |  |-  ( ( W e. Word V /\ N e. ZZ /\ ( # ` W ) = 1 ) -> ( # ` W ) = 1 ) | 
						
							| 4 | 3 | oveq2d |  |-  ( ( W e. Word V /\ N e. ZZ /\ ( # ` W ) = 1 ) -> ( N mod ( # ` W ) ) = ( N mod 1 ) ) | 
						
							| 5 |  | zmod10 |  |-  ( N e. ZZ -> ( N mod 1 ) = 0 ) | 
						
							| 6 | 5 | 3ad2ant2 |  |-  ( ( W e. Word V /\ N e. ZZ /\ ( # ` W ) = 1 ) -> ( N mod 1 ) = 0 ) | 
						
							| 7 | 4 6 | eqtrd |  |-  ( ( W e. Word V /\ N e. ZZ /\ ( # ` W ) = 1 ) -> ( N mod ( # ` W ) ) = 0 ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( W e. Word V /\ N e. ZZ /\ ( # ` W ) = 1 ) -> ( W cyclShift ( N mod ( # ` W ) ) ) = ( W cyclShift 0 ) ) | 
						
							| 9 |  | cshw0 |  |-  ( W e. Word V -> ( W cyclShift 0 ) = W ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( W e. Word V /\ N e. ZZ /\ ( # ` W ) = 1 ) -> ( W cyclShift 0 ) = W ) | 
						
							| 11 | 2 8 10 | 3eqtrd |  |-  ( ( W e. Word V /\ N e. ZZ /\ ( # ` W ) = 1 ) -> ( W cyclShift N ) = W ) |