Description: An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmod10 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 mod 1 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 2 | modfrac | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 mod 1 ) = ( 𝑁 − ( ⌊ ‘ 𝑁 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 mod 1 ) = ( 𝑁 − ( ⌊ ‘ 𝑁 ) ) ) |
| 4 | flid | ⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ 𝑁 ) = 𝑁 ) | |
| 5 | 4 | oveq2d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − ( ⌊ ‘ 𝑁 ) ) = ( 𝑁 − 𝑁 ) ) |
| 6 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 7 | 6 | subidd | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 𝑁 ) = 0 ) |
| 8 | 3 5 7 | 3eqtrd | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 mod 1 ) = 0 ) |