Metamath Proof Explorer


Theorem zmod10

Description: An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion zmod10 NNmod1=0

Proof

Step Hyp Ref Expression
1 zre NN
2 modfrac NNmod1=NN
3 1 2 syl NNmod1=NN
4 flid NN=N
5 4 oveq2d NNN=NN
6 zcn NN
7 6 subidd NNN=0
8 3 5 7 3eqtrd NNmod1=0