Metamath Proof Explorer


Theorem zmod1congr

Description: Two arbitrary integers are congruent modulo 1, see example 4 in ApostolNT p. 107. (Contributed by AV, 21-Jul-2021)

Ref Expression
Assertion zmod1congr ABAmod1=Bmod1

Proof

Step Hyp Ref Expression
1 zmod10 AAmod1=0
2 1 adantr ABAmod1=0
3 zmod10 BBmod1=0
4 3 adantl ABBmod1=0
5 2 4 eqtr4d ABAmod1=Bmod1