Step |
Hyp |
Ref |
Expression |
1 |
|
tocyc01.1 |
|- C = ( toCyc ` D ) |
2 |
|
simpl |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> D e. V ) |
3 |
|
simpr |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) |
4 |
3
|
elin1d |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> W e. dom C ) |
5 |
|
eqid |
|- ( SymGrp ` D ) = ( SymGrp ` D ) |
6 |
|
eqid |
|- ( Base ` ( SymGrp ` D ) ) = ( Base ` ( SymGrp ` D ) ) |
7 |
1 5 6
|
tocycf |
|- ( D e. V -> C : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` ( SymGrp ` D ) ) ) |
8 |
|
fdm |
|- ( C : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` ( SymGrp ` D ) ) -> dom C = { w e. Word D | w : dom w -1-1-> D } ) |
9 |
2 7 8
|
3syl |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> dom C = { w e. Word D | w : dom w -1-1-> D } ) |
10 |
4 9
|
eleqtrd |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> W e. { w e. Word D | w : dom w -1-1-> D } ) |
11 |
|
id |
|- ( w = W -> w = W ) |
12 |
|
dmeq |
|- ( w = W -> dom w = dom W ) |
13 |
|
eqidd |
|- ( w = W -> D = D ) |
14 |
11 12 13
|
f1eq123d |
|- ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) |
15 |
14
|
elrab |
|- ( W e. { w e. Word D | w : dom w -1-1-> D } <-> ( W e. Word D /\ W : dom W -1-1-> D ) ) |
16 |
10 15
|
sylib |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> ( W e. Word D /\ W : dom W -1-1-> D ) ) |
17 |
16
|
simpld |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> W e. Word D ) |
18 |
16
|
simprd |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> W : dom W -1-1-> D ) |
19 |
1 2 17 18
|
tocycfv |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> ( C ` W ) = ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) ) |
20 |
19
|
adantr |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 0 ) -> ( C ` W ) = ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) ) |
21 |
|
hasheq0 |
|- ( W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) -> ( ( # ` W ) = 0 <-> W = (/) ) ) |
22 |
3 21
|
syl |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> ( ( # ` W ) = 0 <-> W = (/) ) ) |
23 |
22
|
biimpa |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 0 ) -> W = (/) ) |
24 |
|
rneq |
|- ( W = (/) -> ran W = ran (/) ) |
25 |
|
rn0 |
|- ran (/) = (/) |
26 |
24 25
|
eqtrdi |
|- ( W = (/) -> ran W = (/) ) |
27 |
26
|
difeq2d |
|- ( W = (/) -> ( D \ ran W ) = ( D \ (/) ) ) |
28 |
|
dif0 |
|- ( D \ (/) ) = D |
29 |
27 28
|
eqtrdi |
|- ( W = (/) -> ( D \ ran W ) = D ) |
30 |
29
|
reseq2d |
|- ( W = (/) -> ( _I |` ( D \ ran W ) ) = ( _I |` D ) ) |
31 |
|
cnveq |
|- ( W = (/) -> `' W = `' (/) ) |
32 |
|
cnv0 |
|- `' (/) = (/) |
33 |
31 32
|
eqtrdi |
|- ( W = (/) -> `' W = (/) ) |
34 |
33
|
coeq2d |
|- ( W = (/) -> ( ( W cyclShift 1 ) o. `' W ) = ( ( W cyclShift 1 ) o. (/) ) ) |
35 |
|
co02 |
|- ( ( W cyclShift 1 ) o. (/) ) = (/) |
36 |
34 35
|
eqtrdi |
|- ( W = (/) -> ( ( W cyclShift 1 ) o. `' W ) = (/) ) |
37 |
30 36
|
uneq12d |
|- ( W = (/) -> ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) = ( ( _I |` D ) u. (/) ) ) |
38 |
|
un0 |
|- ( ( _I |` D ) u. (/) ) = ( _I |` D ) |
39 |
37 38
|
eqtrdi |
|- ( W = (/) -> ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) = ( _I |` D ) ) |
40 |
23 39
|
syl |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 0 ) -> ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) = ( _I |` D ) ) |
41 |
20 40
|
eqtrd |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 0 ) -> ( C ` W ) = ( _I |` D ) ) |
42 |
19
|
adantr |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> ( C ` W ) = ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) ) |
43 |
17
|
adantr |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> W e. Word D ) |
44 |
|
1zzd |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> 1 e. ZZ ) |
45 |
|
simpr |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> ( # ` W ) = 1 ) |
46 |
|
1cshid |
|- ( ( W e. Word D /\ 1 e. ZZ /\ ( # ` W ) = 1 ) -> ( W cyclShift 1 ) = W ) |
47 |
43 44 45 46
|
syl3anc |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> ( W cyclShift 1 ) = W ) |
48 |
47
|
coeq1d |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> ( ( W cyclShift 1 ) o. `' W ) = ( W o. `' W ) ) |
49 |
|
wrdf |
|- ( W e. Word D -> W : ( 0 ..^ ( # ` W ) ) --> D ) |
50 |
|
ffun |
|- ( W : ( 0 ..^ ( # ` W ) ) --> D -> Fun W ) |
51 |
|
funcocnv2 |
|- ( Fun W -> ( W o. `' W ) = ( _I |` ran W ) ) |
52 |
43 49 50 51
|
4syl |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> ( W o. `' W ) = ( _I |` ran W ) ) |
53 |
48 52
|
eqtrd |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> ( ( W cyclShift 1 ) o. `' W ) = ( _I |` ran W ) ) |
54 |
53
|
uneq2d |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) = ( ( _I |` ( D \ ran W ) ) u. ( _I |` ran W ) ) ) |
55 |
|
resundi |
|- ( _I |` ( ( D \ ran W ) u. ran W ) ) = ( ( _I |` ( D \ ran W ) ) u. ( _I |` ran W ) ) |
56 |
|
frn |
|- ( W : ( 0 ..^ ( # ` W ) ) --> D -> ran W C_ D ) |
57 |
|
undifr |
|- ( ran W C_ D <-> ( ( D \ ran W ) u. ran W ) = D ) |
58 |
56 57
|
sylib |
|- ( W : ( 0 ..^ ( # ` W ) ) --> D -> ( ( D \ ran W ) u. ran W ) = D ) |
59 |
43 49 58
|
3syl |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> ( ( D \ ran W ) u. ran W ) = D ) |
60 |
59
|
reseq2d |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> ( _I |` ( ( D \ ran W ) u. ran W ) ) = ( _I |` D ) ) |
61 |
55 60
|
eqtr3id |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> ( ( _I |` ( D \ ran W ) ) u. ( _I |` ran W ) ) = ( _I |` D ) ) |
62 |
42 54 61
|
3eqtrd |
|- ( ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) /\ ( # ` W ) = 1 ) -> ( C ` W ) = ( _I |` D ) ) |
63 |
3
|
elin2d |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> W e. ( `' # " { 0 , 1 } ) ) |
64 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
65 |
|
ffn |
|- ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) |
66 |
|
elpreima |
|- ( # Fn _V -> ( W e. ( `' # " { 0 , 1 } ) <-> ( W e. _V /\ ( # ` W ) e. { 0 , 1 } ) ) ) |
67 |
64 65 66
|
mp2b |
|- ( W e. ( `' # " { 0 , 1 } ) <-> ( W e. _V /\ ( # ` W ) e. { 0 , 1 } ) ) |
68 |
63 67
|
sylib |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> ( W e. _V /\ ( # ` W ) e. { 0 , 1 } ) ) |
69 |
68
|
simprd |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> ( # ` W ) e. { 0 , 1 } ) |
70 |
|
elpri |
|- ( ( # ` W ) e. { 0 , 1 } -> ( ( # ` W ) = 0 \/ ( # ` W ) = 1 ) ) |
71 |
69 70
|
syl |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> ( ( # ` W ) = 0 \/ ( # ` W ) = 1 ) ) |
72 |
41 62 71
|
mpjaodan |
|- ( ( D e. V /\ W e. ( dom C i^i ( `' # " { 0 , 1 } ) ) ) -> ( C ` W ) = ( _I |` D ) ) |