Step |
Hyp |
Ref |
Expression |
1 |
|
tocycf.c |
|- C = ( toCyc ` D ) |
2 |
|
tocycf.s |
|- S = ( SymGrp ` D ) |
3 |
|
tocycf.b |
|- B = ( Base ` S ) |
4 |
1
|
tocycval |
|- ( D e. V -> C = ( u e. { w e. Word D | w : dom w -1-1-> D } |-> ( ( _I |` ( D \ ran u ) ) u. ( ( u cyclShift 1 ) o. `' u ) ) ) ) |
5 |
|
simpr |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> u = (/) ) |
6 |
5
|
rneqd |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> ran u = ran (/) ) |
7 |
|
rn0 |
|- ran (/) = (/) |
8 |
6 7
|
eqtrdi |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> ran u = (/) ) |
9 |
8
|
difeq2d |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> ( D \ ran u ) = ( D \ (/) ) ) |
10 |
|
dif0 |
|- ( D \ (/) ) = D |
11 |
9 10
|
eqtrdi |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> ( D \ ran u ) = D ) |
12 |
11
|
reseq2d |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> ( _I |` ( D \ ran u ) ) = ( _I |` D ) ) |
13 |
5
|
cnveqd |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> `' u = `' (/) ) |
14 |
|
cnv0 |
|- `' (/) = (/) |
15 |
13 14
|
eqtrdi |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> `' u = (/) ) |
16 |
15
|
coeq2d |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> ( ( u cyclShift 1 ) o. `' u ) = ( ( u cyclShift 1 ) o. (/) ) ) |
17 |
|
co02 |
|- ( ( u cyclShift 1 ) o. (/) ) = (/) |
18 |
16 17
|
eqtrdi |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> ( ( u cyclShift 1 ) o. `' u ) = (/) ) |
19 |
12 18
|
uneq12d |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> ( ( _I |` ( D \ ran u ) ) u. ( ( u cyclShift 1 ) o. `' u ) ) = ( ( _I |` D ) u. (/) ) ) |
20 |
|
un0 |
|- ( ( _I |` D ) u. (/) ) = ( _I |` D ) |
21 |
19 20
|
eqtrdi |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> ( ( _I |` ( D \ ran u ) ) u. ( ( u cyclShift 1 ) o. `' u ) ) = ( _I |` D ) ) |
22 |
2
|
idresperm |
|- ( D e. V -> ( _I |` D ) e. ( Base ` S ) ) |
23 |
22 3
|
eleqtrrdi |
|- ( D e. V -> ( _I |` D ) e. B ) |
24 |
23
|
ad2antrr |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> ( _I |` D ) e. B ) |
25 |
21 24
|
eqeltrd |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u = (/) ) -> ( ( _I |` ( D \ ran u ) ) u. ( ( u cyclShift 1 ) o. `' u ) ) e. B ) |
26 |
|
difexg |
|- ( D e. V -> ( D \ ran u ) e. _V ) |
27 |
26
|
resiexd |
|- ( D e. V -> ( _I |` ( D \ ran u ) ) e. _V ) |
28 |
|
ovex |
|- ( u cyclShift 1 ) e. _V |
29 |
|
vex |
|- u e. _V |
30 |
29
|
cnvex |
|- `' u e. _V |
31 |
28 30
|
coex |
|- ( ( u cyclShift 1 ) o. `' u ) e. _V |
32 |
|
unexg |
|- ( ( ( _I |` ( D \ ran u ) ) e. _V /\ ( ( u cyclShift 1 ) o. `' u ) e. _V ) -> ( ( _I |` ( D \ ran u ) ) u. ( ( u cyclShift 1 ) o. `' u ) ) e. _V ) |
33 |
27 31 32
|
sylancl |
|- ( D e. V -> ( ( _I |` ( D \ ran u ) ) u. ( ( u cyclShift 1 ) o. `' u ) ) e. _V ) |
34 |
33
|
adantr |
|- ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) -> ( ( _I |` ( D \ ran u ) ) u. ( ( u cyclShift 1 ) o. `' u ) ) e. _V ) |
35 |
4 34
|
fvmpt2d |
|- ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) -> ( C ` u ) = ( ( _I |` ( D \ ran u ) ) u. ( ( u cyclShift 1 ) o. `' u ) ) ) |
36 |
35
|
adantr |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u =/= (/) ) -> ( C ` u ) = ( ( _I |` ( D \ ran u ) ) u. ( ( u cyclShift 1 ) o. `' u ) ) ) |
37 |
|
simpll |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u =/= (/) ) -> D e. V ) |
38 |
|
simplr |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u =/= (/) ) -> u e. { w e. Word D | w : dom w -1-1-> D } ) |
39 |
|
id |
|- ( w = u -> w = u ) |
40 |
|
dmeq |
|- ( w = u -> dom w = dom u ) |
41 |
|
eqidd |
|- ( w = u -> D = D ) |
42 |
39 40 41
|
f1eq123d |
|- ( w = u -> ( w : dom w -1-1-> D <-> u : dom u -1-1-> D ) ) |
43 |
42
|
elrab |
|- ( u e. { w e. Word D | w : dom w -1-1-> D } <-> ( u e. Word D /\ u : dom u -1-1-> D ) ) |
44 |
38 43
|
sylib |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u =/= (/) ) -> ( u e. Word D /\ u : dom u -1-1-> D ) ) |
45 |
44
|
simpld |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u =/= (/) ) -> u e. Word D ) |
46 |
44
|
simprd |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u =/= (/) ) -> u : dom u -1-1-> D ) |
47 |
1 37 45 46 2
|
cycpmcl |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u =/= (/) ) -> ( C ` u ) e. ( Base ` S ) ) |
48 |
47 3
|
eleqtrrdi |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u =/= (/) ) -> ( C ` u ) e. B ) |
49 |
36 48
|
eqeltrrd |
|- ( ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) /\ u =/= (/) ) -> ( ( _I |` ( D \ ran u ) ) u. ( ( u cyclShift 1 ) o. `' u ) ) e. B ) |
50 |
25 49
|
pm2.61dane |
|- ( ( D e. V /\ u e. { w e. Word D | w : dom w -1-1-> D } ) -> ( ( _I |` ( D \ ran u ) ) u. ( ( u cyclShift 1 ) o. `' u ) ) e. B ) |
51 |
4 50
|
fmpt3d |
|- ( D e. V -> C : { w e. Word D | w : dom w -1-1-> D } --> B ) |