| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c |  |-  M = ( toCyc ` D ) | 
						
							| 2 |  | cycpmco2.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpmco2.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | cycpmco2.w |  |-  ( ph -> W e. dom M ) | 
						
							| 5 |  | cycpmco2.i |  |-  ( ph -> I e. ( D \ ran W ) ) | 
						
							| 6 |  | cycpmco2.j |  |-  ( ph -> J e. ran W ) | 
						
							| 7 |  | cycpmco2.e |  |-  E = ( ( `' W ` J ) + 1 ) | 
						
							| 8 |  | cycpmco2.1 |  |-  U = ( W splice <. E , E , <" I "> >. ) | 
						
							| 9 |  | ssrab2 |  |-  { w e. Word D | w : dom w -1-1-> D } C_ Word D | 
						
							| 10 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 11 | 1 2 10 | tocycf |  |-  ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 12 | 3 11 | syl |  |-  ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 13 | 12 | fdmd |  |-  ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 14 | 4 13 | eleqtrd |  |-  ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 15 | 9 14 | sselid |  |-  ( ph -> W e. Word D ) | 
						
							| 16 |  | pfxcl |  |-  ( W e. Word D -> ( W prefix E ) e. Word D ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> ( W prefix E ) e. Word D ) | 
						
							| 18 | 5 | eldifad |  |-  ( ph -> I e. D ) | 
						
							| 19 | 18 | s1cld |  |-  ( ph -> <" I "> e. Word D ) | 
						
							| 20 |  | ccatcl |  |-  ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 21 | 17 19 20 | syl2anc |  |-  ( ph -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 22 |  | swrdcl |  |-  ( W e. Word D -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 23 | 15 22 | syl |  |-  ( ph -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 24 |  | id |  |-  ( w = W -> w = W ) | 
						
							| 25 |  | dmeq |  |-  ( w = W -> dom w = dom W ) | 
						
							| 26 |  | eqidd |  |-  ( w = W -> D = D ) | 
						
							| 27 | 24 25 26 | f1eq123d |  |-  ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) | 
						
							| 28 | 27 | elrab |  |-  ( W e. { w e. Word D | w : dom w -1-1-> D } <-> ( W e. Word D /\ W : dom W -1-1-> D ) ) | 
						
							| 29 | 14 28 | sylib |  |-  ( ph -> ( W e. Word D /\ W : dom W -1-1-> D ) ) | 
						
							| 30 | 29 | simprd |  |-  ( ph -> W : dom W -1-1-> D ) | 
						
							| 31 |  | f1cnv |  |-  ( W : dom W -1-1-> D -> `' W : ran W -1-1-onto-> dom W ) | 
						
							| 32 |  | f1of |  |-  ( `' W : ran W -1-1-onto-> dom W -> `' W : ran W --> dom W ) | 
						
							| 33 | 30 31 32 | 3syl |  |-  ( ph -> `' W : ran W --> dom W ) | 
						
							| 34 | 33 6 | ffvelcdmd |  |-  ( ph -> ( `' W ` J ) e. dom W ) | 
						
							| 35 |  | wrddm |  |-  ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 36 | 15 35 | syl |  |-  ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 37 | 34 36 | eleqtrd |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 38 |  | fzofzp1 |  |-  ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 40 | 7 39 | eqeltrid |  |-  ( ph -> E e. ( 0 ... ( # ` W ) ) ) | 
						
							| 41 | 15 30 40 | pfxf1 |  |-  ( ph -> ( W prefix E ) : dom ( W prefix E ) -1-1-> D ) | 
						
							| 42 | 18 | s1f1 |  |-  ( ph -> <" I "> : dom <" I "> -1-1-> D ) | 
						
							| 43 |  | s1rn |  |-  ( I e. D -> ran <" I "> = { I } ) | 
						
							| 44 | 18 43 | syl |  |-  ( ph -> ran <" I "> = { I } ) | 
						
							| 45 | 44 | ineq2d |  |-  ( ph -> ( ran ( W prefix E ) i^i ran <" I "> ) = ( ran ( W prefix E ) i^i { I } ) ) | 
						
							| 46 |  | pfxrn2 |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) ) -> ran ( W prefix E ) C_ ran W ) | 
						
							| 47 | 15 40 46 | syl2anc |  |-  ( ph -> ran ( W prefix E ) C_ ran W ) | 
						
							| 48 | 47 | ssrind |  |-  ( ph -> ( ran ( W prefix E ) i^i { I } ) C_ ( ran W i^i { I } ) ) | 
						
							| 49 | 5 | eldifbd |  |-  ( ph -> -. I e. ran W ) | 
						
							| 50 |  | disjsn |  |-  ( ( ran W i^i { I } ) = (/) <-> -. I e. ran W ) | 
						
							| 51 | 49 50 | sylibr |  |-  ( ph -> ( ran W i^i { I } ) = (/) ) | 
						
							| 52 | 48 51 | sseqtrd |  |-  ( ph -> ( ran ( W prefix E ) i^i { I } ) C_ (/) ) | 
						
							| 53 |  | ss0 |  |-  ( ( ran ( W prefix E ) i^i { I } ) C_ (/) -> ( ran ( W prefix E ) i^i { I } ) = (/) ) | 
						
							| 54 | 52 53 | syl |  |-  ( ph -> ( ran ( W prefix E ) i^i { I } ) = (/) ) | 
						
							| 55 | 45 54 | eqtrd |  |-  ( ph -> ( ran ( W prefix E ) i^i ran <" I "> ) = (/) ) | 
						
							| 56 | 3 17 19 41 42 55 | ccatf1 |  |-  ( ph -> ( ( W prefix E ) ++ <" I "> ) : dom ( ( W prefix E ) ++ <" I "> ) -1-1-> D ) | 
						
							| 57 |  | lencl |  |-  ( W e. Word D -> ( # ` W ) e. NN0 ) | 
						
							| 58 |  | nn0fz0 |  |-  ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 59 | 58 | biimpi |  |-  ( ( # ` W ) e. NN0 -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 60 | 15 57 59 | 3syl |  |-  ( ph -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 61 | 15 40 60 30 | swrdf1 |  |-  ( ph -> ( W substr <. E , ( # ` W ) >. ) : dom ( W substr <. E , ( # ` W ) >. ) -1-1-> D ) | 
						
							| 62 |  | ccatrn |  |-  ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ran ( ( W prefix E ) ++ <" I "> ) = ( ran ( W prefix E ) u. ran <" I "> ) ) | 
						
							| 63 | 17 19 62 | syl2anc |  |-  ( ph -> ran ( ( W prefix E ) ++ <" I "> ) = ( ran ( W prefix E ) u. ran <" I "> ) ) | 
						
							| 64 | 63 | ineq1d |  |-  ( ph -> ( ran ( ( W prefix E ) ++ <" I "> ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) = ( ( ran ( W prefix E ) u. ran <" I "> ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 65 |  | indir |  |-  ( ( ran ( W prefix E ) u. ran <" I "> ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) = ( ( ran ( W prefix E ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) u. ( ran <" I "> i^i ran ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 66 | 64 65 | eqtrdi |  |-  ( ph -> ( ran ( ( W prefix E ) ++ <" I "> ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) = ( ( ran ( W prefix E ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) u. ( ran <" I "> i^i ran ( W substr <. E , ( # ` W ) >. ) ) ) ) | 
						
							| 67 |  | fz0ssnn0 |  |-  ( 0 ... ( # ` W ) ) C_ NN0 | 
						
							| 68 | 67 40 | sselid |  |-  ( ph -> E e. NN0 ) | 
						
							| 69 |  | pfxval |  |-  ( ( W e. Word D /\ E e. NN0 ) -> ( W prefix E ) = ( W substr <. 0 , E >. ) ) | 
						
							| 70 | 15 68 69 | syl2anc |  |-  ( ph -> ( W prefix E ) = ( W substr <. 0 , E >. ) ) | 
						
							| 71 | 70 | rneqd |  |-  ( ph -> ran ( W prefix E ) = ran ( W substr <. 0 , E >. ) ) | 
						
							| 72 | 71 | ineq1d |  |-  ( ph -> ( ran ( W prefix E ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) = ( ran ( W substr <. 0 , E >. ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 73 |  | 0elfz |  |-  ( E e. NN0 -> 0 e. ( 0 ... E ) ) | 
						
							| 74 | 68 73 | syl |  |-  ( ph -> 0 e. ( 0 ... E ) ) | 
						
							| 75 |  | elfzuz3 |  |-  ( E e. ( 0 ... ( # ` W ) ) -> ( # ` W ) e. ( ZZ>= ` E ) ) | 
						
							| 76 |  | eluzfz1 |  |-  ( ( # ` W ) e. ( ZZ>= ` E ) -> E e. ( E ... ( # ` W ) ) ) | 
						
							| 77 | 40 75 76 | 3syl |  |-  ( ph -> E e. ( E ... ( # ` W ) ) ) | 
						
							| 78 |  | eluzfz2 |  |-  ( ( # ` W ) e. ( ZZ>= ` E ) -> ( # ` W ) e. ( E ... ( # ` W ) ) ) | 
						
							| 79 | 40 75 78 | 3syl |  |-  ( ph -> ( # ` W ) e. ( E ... ( # ` W ) ) ) | 
						
							| 80 | 15 74 40 30 77 79 | swrdrndisj |  |-  ( ph -> ( ran ( W substr <. 0 , E >. ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) = (/) ) | 
						
							| 81 | 72 80 | eqtrd |  |-  ( ph -> ( ran ( W prefix E ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) = (/) ) | 
						
							| 82 |  | incom |  |-  ( ran <" I "> i^i ran ( W substr <. E , ( # ` W ) >. ) ) = ( ran ( W substr <. E , ( # ` W ) >. ) i^i ran <" I "> ) | 
						
							| 83 | 44 | ineq2d |  |-  ( ph -> ( ran ( W substr <. E , ( # ` W ) >. ) i^i ran <" I "> ) = ( ran ( W substr <. E , ( # ` W ) >. ) i^i { I } ) ) | 
						
							| 84 |  | swrdrn2 |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` W ) ) ) -> ran ( W substr <. E , ( # ` W ) >. ) C_ ran W ) | 
						
							| 85 | 15 40 60 84 | syl3anc |  |-  ( ph -> ran ( W substr <. E , ( # ` W ) >. ) C_ ran W ) | 
						
							| 86 | 85 | ssrind |  |-  ( ph -> ( ran ( W substr <. E , ( # ` W ) >. ) i^i { I } ) C_ ( ran W i^i { I } ) ) | 
						
							| 87 | 86 51 | sseqtrd |  |-  ( ph -> ( ran ( W substr <. E , ( # ` W ) >. ) i^i { I } ) C_ (/) ) | 
						
							| 88 |  | ss0 |  |-  ( ( ran ( W substr <. E , ( # ` W ) >. ) i^i { I } ) C_ (/) -> ( ran ( W substr <. E , ( # ` W ) >. ) i^i { I } ) = (/) ) | 
						
							| 89 | 87 88 | syl |  |-  ( ph -> ( ran ( W substr <. E , ( # ` W ) >. ) i^i { I } ) = (/) ) | 
						
							| 90 | 83 89 | eqtrd |  |-  ( ph -> ( ran ( W substr <. E , ( # ` W ) >. ) i^i ran <" I "> ) = (/) ) | 
						
							| 91 | 82 90 | eqtrid |  |-  ( ph -> ( ran <" I "> i^i ran ( W substr <. E , ( # ` W ) >. ) ) = (/) ) | 
						
							| 92 | 81 91 | uneq12d |  |-  ( ph -> ( ( ran ( W prefix E ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) u. ( ran <" I "> i^i ran ( W substr <. E , ( # ` W ) >. ) ) ) = ( (/) u. (/) ) ) | 
						
							| 93 |  | unidm |  |-  ( (/) u. (/) ) = (/) | 
						
							| 94 | 93 | a1i |  |-  ( ph -> ( (/) u. (/) ) = (/) ) | 
						
							| 95 | 66 92 94 | 3eqtrd |  |-  ( ph -> ( ran ( ( W prefix E ) ++ <" I "> ) i^i ran ( W substr <. E , ( # ` W ) >. ) ) = (/) ) | 
						
							| 96 | 3 21 23 56 61 95 | ccatf1 |  |-  ( ph -> ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) : dom ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) -1-1-> D ) | 
						
							| 97 |  | ovexd |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. _V ) | 
						
							| 98 | 7 97 | eqeltrid |  |-  ( ph -> E e. _V ) | 
						
							| 99 |  | splval |  |-  ( ( W e. dom M /\ ( E e. _V /\ E e. _V /\ <" I "> e. Word D ) ) -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 100 | 4 98 98 19 99 | syl13anc |  |-  ( ph -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 101 | 8 100 | eqtrid |  |-  ( ph -> U = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 102 | 101 | dmeqd |  |-  ( ph -> dom U = dom ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 103 |  | eqidd |  |-  ( ph -> D = D ) | 
						
							| 104 | 101 102 103 | f1eq123d |  |-  ( ph -> ( U : dom U -1-1-> D <-> ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) : dom ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) -1-1-> D ) ) | 
						
							| 105 | 96 104 | mpbird |  |-  ( ph -> U : dom U -1-1-> D ) |