Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmco2.c |
|- M = ( toCyc ` D ) |
2 |
|
cycpmco2.s |
|- S = ( SymGrp ` D ) |
3 |
|
cycpmco2.d |
|- ( ph -> D e. V ) |
4 |
|
cycpmco2.w |
|- ( ph -> W e. dom M ) |
5 |
|
cycpmco2.i |
|- ( ph -> I e. ( D \ ran W ) ) |
6 |
|
cycpmco2.j |
|- ( ph -> J e. ran W ) |
7 |
|
cycpmco2.e |
|- E = ( ( `' W ` J ) + 1 ) |
8 |
|
cycpmco2.1 |
|- U = ( W splice <. E , E , <" I "> >. ) |
9 |
|
un23 |
|- ( ( ( W " ( 0 ..^ E ) ) u. { I } ) u. ( W " ( E ..^ ( # ` W ) ) ) ) = ( ( ( W " ( 0 ..^ E ) ) u. ( W " ( E ..^ ( # ` W ) ) ) ) u. { I } ) |
10 |
|
ovexd |
|- ( ph -> ( ( `' W ` J ) + 1 ) e. _V ) |
11 |
7 10
|
eqeltrid |
|- ( ph -> E e. _V ) |
12 |
5
|
eldifad |
|- ( ph -> I e. D ) |
13 |
12
|
s1cld |
|- ( ph -> <" I "> e. Word D ) |
14 |
|
splval |
|- ( ( W e. dom M /\ ( E e. _V /\ E e. _V /\ <" I "> e. Word D ) ) -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
15 |
4 11 11 13 14
|
syl13anc |
|- ( ph -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
16 |
8 15
|
syl5eq |
|- ( ph -> U = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
17 |
16
|
rneqd |
|- ( ph -> ran U = ran ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
18 |
|
ssrab2 |
|- { w e. Word D | w : dom w -1-1-> D } C_ Word D |
19 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
20 |
1 2 19
|
tocycf |
|- ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
21 |
3 20
|
syl |
|- ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
22 |
21
|
fdmd |
|- ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) |
23 |
4 22
|
eleqtrd |
|- ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) |
24 |
18 23
|
sselid |
|- ( ph -> W e. Word D ) |
25 |
|
pfxcl |
|- ( W e. Word D -> ( W prefix E ) e. Word D ) |
26 |
24 25
|
syl |
|- ( ph -> ( W prefix E ) e. Word D ) |
27 |
|
ccatcl |
|- ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) |
28 |
26 13 27
|
syl2anc |
|- ( ph -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) |
29 |
|
swrdcl |
|- ( W e. Word D -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) |
30 |
24 29
|
syl |
|- ( ph -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) |
31 |
|
ccatrn |
|- ( ( ( ( W prefix E ) ++ <" I "> ) e. Word D /\ ( W substr <. E , ( # ` W ) >. ) e. Word D ) -> ran ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) = ( ran ( ( W prefix E ) ++ <" I "> ) u. ran ( W substr <. E , ( # ` W ) >. ) ) ) |
32 |
28 30 31
|
syl2anc |
|- ( ph -> ran ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) = ( ran ( ( W prefix E ) ++ <" I "> ) u. ran ( W substr <. E , ( # ` W ) >. ) ) ) |
33 |
|
ccatrn |
|- ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ran ( ( W prefix E ) ++ <" I "> ) = ( ran ( W prefix E ) u. ran <" I "> ) ) |
34 |
26 13 33
|
syl2anc |
|- ( ph -> ran ( ( W prefix E ) ++ <" I "> ) = ( ran ( W prefix E ) u. ran <" I "> ) ) |
35 |
|
id |
|- ( w = W -> w = W ) |
36 |
|
dmeq |
|- ( w = W -> dom w = dom W ) |
37 |
|
eqidd |
|- ( w = W -> D = D ) |
38 |
35 36 37
|
f1eq123d |
|- ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) |
39 |
38
|
elrab |
|- ( W e. { w e. Word D | w : dom w -1-1-> D } <-> ( W e. Word D /\ W : dom W -1-1-> D ) ) |
40 |
23 39
|
sylib |
|- ( ph -> ( W e. Word D /\ W : dom W -1-1-> D ) ) |
41 |
40
|
simprd |
|- ( ph -> W : dom W -1-1-> D ) |
42 |
|
f1cnv |
|- ( W : dom W -1-1-> D -> `' W : ran W -1-1-onto-> dom W ) |
43 |
|
f1of |
|- ( `' W : ran W -1-1-onto-> dom W -> `' W : ran W --> dom W ) |
44 |
41 42 43
|
3syl |
|- ( ph -> `' W : ran W --> dom W ) |
45 |
44 6
|
ffvelrnd |
|- ( ph -> ( `' W ` J ) e. dom W ) |
46 |
|
wrddm |
|- ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) |
47 |
24 46
|
syl |
|- ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) |
48 |
45 47
|
eleqtrd |
|- ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) ) |
49 |
|
fzofzp1 |
|- ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
50 |
48 49
|
syl |
|- ( ph -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
51 |
7 50
|
eqeltrid |
|- ( ph -> E e. ( 0 ... ( # ` W ) ) ) |
52 |
|
pfxrn3 |
|- ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) ) -> ran ( W prefix E ) = ( W " ( 0 ..^ E ) ) ) |
53 |
24 51 52
|
syl2anc |
|- ( ph -> ran ( W prefix E ) = ( W " ( 0 ..^ E ) ) ) |
54 |
|
s1rn |
|- ( I e. D -> ran <" I "> = { I } ) |
55 |
12 54
|
syl |
|- ( ph -> ran <" I "> = { I } ) |
56 |
53 55
|
uneq12d |
|- ( ph -> ( ran ( W prefix E ) u. ran <" I "> ) = ( ( W " ( 0 ..^ E ) ) u. { I } ) ) |
57 |
34 56
|
eqtrd |
|- ( ph -> ran ( ( W prefix E ) ++ <" I "> ) = ( ( W " ( 0 ..^ E ) ) u. { I } ) ) |
58 |
|
lencl |
|- ( W e. Word D -> ( # ` W ) e. NN0 ) |
59 |
|
nn0fz0 |
|- ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
60 |
59
|
biimpi |
|- ( ( # ` W ) e. NN0 -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
61 |
24 58 60
|
3syl |
|- ( ph -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
62 |
|
swrdrn3 |
|- ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` W ) ) ) -> ran ( W substr <. E , ( # ` W ) >. ) = ( W " ( E ..^ ( # ` W ) ) ) ) |
63 |
24 51 61 62
|
syl3anc |
|- ( ph -> ran ( W substr <. E , ( # ` W ) >. ) = ( W " ( E ..^ ( # ` W ) ) ) ) |
64 |
57 63
|
uneq12d |
|- ( ph -> ( ran ( ( W prefix E ) ++ <" I "> ) u. ran ( W substr <. E , ( # ` W ) >. ) ) = ( ( ( W " ( 0 ..^ E ) ) u. { I } ) u. ( W " ( E ..^ ( # ` W ) ) ) ) ) |
65 |
17 32 64
|
3eqtrd |
|- ( ph -> ran U = ( ( ( W " ( 0 ..^ E ) ) u. { I } ) u. ( W " ( E ..^ ( # ` W ) ) ) ) ) |
66 |
|
fzosplit |
|- ( E e. ( 0 ... ( # ` W ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ E ) u. ( E ..^ ( # ` W ) ) ) ) |
67 |
51 66
|
syl |
|- ( ph -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ E ) u. ( E ..^ ( # ` W ) ) ) ) |
68 |
67
|
imaeq2d |
|- ( ph -> ( W " ( 0 ..^ ( # ` W ) ) ) = ( W " ( ( 0 ..^ E ) u. ( E ..^ ( # ` W ) ) ) ) ) |
69 |
|
wrdf |
|- ( W e. Word D -> W : ( 0 ..^ ( # ` W ) ) --> D ) |
70 |
24 69
|
syl |
|- ( ph -> W : ( 0 ..^ ( # ` W ) ) --> D ) |
71 |
70
|
ffnd |
|- ( ph -> W Fn ( 0 ..^ ( # ` W ) ) ) |
72 |
|
fnima |
|- ( W Fn ( 0 ..^ ( # ` W ) ) -> ( W " ( 0 ..^ ( # ` W ) ) ) = ran W ) |
73 |
71 72
|
syl |
|- ( ph -> ( W " ( 0 ..^ ( # ` W ) ) ) = ran W ) |
74 |
|
elfzuz3 |
|- ( E e. ( 0 ... ( # ` W ) ) -> ( # ` W ) e. ( ZZ>= ` E ) ) |
75 |
|
fzoss2 |
|- ( ( # ` W ) e. ( ZZ>= ` E ) -> ( 0 ..^ E ) C_ ( 0 ..^ ( # ` W ) ) ) |
76 |
51 74 75
|
3syl |
|- ( ph -> ( 0 ..^ E ) C_ ( 0 ..^ ( # ` W ) ) ) |
77 |
|
fz0ssnn0 |
|- ( 0 ... ( # ` W ) ) C_ NN0 |
78 |
77 51
|
sselid |
|- ( ph -> E e. NN0 ) |
79 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
80 |
78 79
|
eleqtrdi |
|- ( ph -> E e. ( ZZ>= ` 0 ) ) |
81 |
|
fzoss1 |
|- ( E e. ( ZZ>= ` 0 ) -> ( E ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) ) |
82 |
80 81
|
syl |
|- ( ph -> ( E ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) ) |
83 |
|
unima |
|- ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ ( 0 ..^ E ) C_ ( 0 ..^ ( # ` W ) ) /\ ( E ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) ) -> ( W " ( ( 0 ..^ E ) u. ( E ..^ ( # ` W ) ) ) ) = ( ( W " ( 0 ..^ E ) ) u. ( W " ( E ..^ ( # ` W ) ) ) ) ) |
84 |
71 76 82 83
|
syl3anc |
|- ( ph -> ( W " ( ( 0 ..^ E ) u. ( E ..^ ( # ` W ) ) ) ) = ( ( W " ( 0 ..^ E ) ) u. ( W " ( E ..^ ( # ` W ) ) ) ) ) |
85 |
68 73 84
|
3eqtr3d |
|- ( ph -> ran W = ( ( W " ( 0 ..^ E ) ) u. ( W " ( E ..^ ( # ` W ) ) ) ) ) |
86 |
85
|
uneq1d |
|- ( ph -> ( ran W u. { I } ) = ( ( ( W " ( 0 ..^ E ) ) u. ( W " ( E ..^ ( # ` W ) ) ) ) u. { I } ) ) |
87 |
9 65 86
|
3eqtr4a |
|- ( ph -> ran U = ( ran W u. { I } ) ) |