| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c |  |-  M = ( toCyc ` D ) | 
						
							| 2 |  | cycpmco2.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpmco2.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | cycpmco2.w |  |-  ( ph -> W e. dom M ) | 
						
							| 5 |  | cycpmco2.i |  |-  ( ph -> I e. ( D \ ran W ) ) | 
						
							| 6 |  | cycpmco2.j |  |-  ( ph -> J e. ran W ) | 
						
							| 7 |  | cycpmco2.e |  |-  E = ( ( `' W ` J ) + 1 ) | 
						
							| 8 |  | cycpmco2.1 |  |-  U = ( W splice <. E , E , <" I "> >. ) | 
						
							| 9 |  | un23 |  |-  ( ( ( W " ( 0 ..^ E ) ) u. { I } ) u. ( W " ( E ..^ ( # ` W ) ) ) ) = ( ( ( W " ( 0 ..^ E ) ) u. ( W " ( E ..^ ( # ` W ) ) ) ) u. { I } ) | 
						
							| 10 |  | ovexd |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. _V ) | 
						
							| 11 | 7 10 | eqeltrid |  |-  ( ph -> E e. _V ) | 
						
							| 12 | 5 | eldifad |  |-  ( ph -> I e. D ) | 
						
							| 13 | 12 | s1cld |  |-  ( ph -> <" I "> e. Word D ) | 
						
							| 14 |  | splval |  |-  ( ( W e. dom M /\ ( E e. _V /\ E e. _V /\ <" I "> e. Word D ) ) -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 15 | 4 11 11 13 14 | syl13anc |  |-  ( ph -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 16 | 8 15 | eqtrid |  |-  ( ph -> U = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 17 | 16 | rneqd |  |-  ( ph -> ran U = ran ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 18 |  | ssrab2 |  |-  { w e. Word D | w : dom w -1-1-> D } C_ Word D | 
						
							| 19 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 20 | 1 2 19 | tocycf |  |-  ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 21 | 3 20 | syl |  |-  ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 22 | 21 | fdmd |  |-  ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 23 | 4 22 | eleqtrd |  |-  ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 24 | 18 23 | sselid |  |-  ( ph -> W e. Word D ) | 
						
							| 25 |  | pfxcl |  |-  ( W e. Word D -> ( W prefix E ) e. Word D ) | 
						
							| 26 | 24 25 | syl |  |-  ( ph -> ( W prefix E ) e. Word D ) | 
						
							| 27 |  | ccatcl |  |-  ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 28 | 26 13 27 | syl2anc |  |-  ( ph -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 29 |  | swrdcl |  |-  ( W e. Word D -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 30 | 24 29 | syl |  |-  ( ph -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 31 |  | ccatrn |  |-  ( ( ( ( W prefix E ) ++ <" I "> ) e. Word D /\ ( W substr <. E , ( # ` W ) >. ) e. Word D ) -> ran ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) = ( ran ( ( W prefix E ) ++ <" I "> ) u. ran ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 32 | 28 30 31 | syl2anc |  |-  ( ph -> ran ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) = ( ran ( ( W prefix E ) ++ <" I "> ) u. ran ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 33 |  | ccatrn |  |-  ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ran ( ( W prefix E ) ++ <" I "> ) = ( ran ( W prefix E ) u. ran <" I "> ) ) | 
						
							| 34 | 26 13 33 | syl2anc |  |-  ( ph -> ran ( ( W prefix E ) ++ <" I "> ) = ( ran ( W prefix E ) u. ran <" I "> ) ) | 
						
							| 35 |  | id |  |-  ( w = W -> w = W ) | 
						
							| 36 |  | dmeq |  |-  ( w = W -> dom w = dom W ) | 
						
							| 37 |  | eqidd |  |-  ( w = W -> D = D ) | 
						
							| 38 | 35 36 37 | f1eq123d |  |-  ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) | 
						
							| 39 | 38 | elrab |  |-  ( W e. { w e. Word D | w : dom w -1-1-> D } <-> ( W e. Word D /\ W : dom W -1-1-> D ) ) | 
						
							| 40 | 23 39 | sylib |  |-  ( ph -> ( W e. Word D /\ W : dom W -1-1-> D ) ) | 
						
							| 41 | 40 | simprd |  |-  ( ph -> W : dom W -1-1-> D ) | 
						
							| 42 |  | f1cnv |  |-  ( W : dom W -1-1-> D -> `' W : ran W -1-1-onto-> dom W ) | 
						
							| 43 |  | f1of |  |-  ( `' W : ran W -1-1-onto-> dom W -> `' W : ran W --> dom W ) | 
						
							| 44 | 41 42 43 | 3syl |  |-  ( ph -> `' W : ran W --> dom W ) | 
						
							| 45 | 44 6 | ffvelcdmd |  |-  ( ph -> ( `' W ` J ) e. dom W ) | 
						
							| 46 |  | wrddm |  |-  ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 47 | 24 46 | syl |  |-  ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 48 | 45 47 | eleqtrd |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 49 |  | fzofzp1 |  |-  ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 51 | 7 50 | eqeltrid |  |-  ( ph -> E e. ( 0 ... ( # ` W ) ) ) | 
						
							| 52 |  | pfxrn3 |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) ) -> ran ( W prefix E ) = ( W " ( 0 ..^ E ) ) ) | 
						
							| 53 | 24 51 52 | syl2anc |  |-  ( ph -> ran ( W prefix E ) = ( W " ( 0 ..^ E ) ) ) | 
						
							| 54 |  | s1rn |  |-  ( I e. D -> ran <" I "> = { I } ) | 
						
							| 55 | 12 54 | syl |  |-  ( ph -> ran <" I "> = { I } ) | 
						
							| 56 | 53 55 | uneq12d |  |-  ( ph -> ( ran ( W prefix E ) u. ran <" I "> ) = ( ( W " ( 0 ..^ E ) ) u. { I } ) ) | 
						
							| 57 | 34 56 | eqtrd |  |-  ( ph -> ran ( ( W prefix E ) ++ <" I "> ) = ( ( W " ( 0 ..^ E ) ) u. { I } ) ) | 
						
							| 58 |  | lencl |  |-  ( W e. Word D -> ( # ` W ) e. NN0 ) | 
						
							| 59 |  | nn0fz0 |  |-  ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 60 | 59 | biimpi |  |-  ( ( # ` W ) e. NN0 -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 61 | 24 58 60 | 3syl |  |-  ( ph -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 62 |  | swrdrn3 |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` W ) ) ) -> ran ( W substr <. E , ( # ` W ) >. ) = ( W " ( E ..^ ( # ` W ) ) ) ) | 
						
							| 63 | 24 51 61 62 | syl3anc |  |-  ( ph -> ran ( W substr <. E , ( # ` W ) >. ) = ( W " ( E ..^ ( # ` W ) ) ) ) | 
						
							| 64 | 57 63 | uneq12d |  |-  ( ph -> ( ran ( ( W prefix E ) ++ <" I "> ) u. ran ( W substr <. E , ( # ` W ) >. ) ) = ( ( ( W " ( 0 ..^ E ) ) u. { I } ) u. ( W " ( E ..^ ( # ` W ) ) ) ) ) | 
						
							| 65 | 17 32 64 | 3eqtrd |  |-  ( ph -> ran U = ( ( ( W " ( 0 ..^ E ) ) u. { I } ) u. ( W " ( E ..^ ( # ` W ) ) ) ) ) | 
						
							| 66 |  | fzosplit |  |-  ( E e. ( 0 ... ( # ` W ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ E ) u. ( E ..^ ( # ` W ) ) ) ) | 
						
							| 67 | 51 66 | syl |  |-  ( ph -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ E ) u. ( E ..^ ( # ` W ) ) ) ) | 
						
							| 68 | 67 | imaeq2d |  |-  ( ph -> ( W " ( 0 ..^ ( # ` W ) ) ) = ( W " ( ( 0 ..^ E ) u. ( E ..^ ( # ` W ) ) ) ) ) | 
						
							| 69 |  | wrdf |  |-  ( W e. Word D -> W : ( 0 ..^ ( # ` W ) ) --> D ) | 
						
							| 70 | 24 69 | syl |  |-  ( ph -> W : ( 0 ..^ ( # ` W ) ) --> D ) | 
						
							| 71 | 70 | ffnd |  |-  ( ph -> W Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 72 |  | fnima |  |-  ( W Fn ( 0 ..^ ( # ` W ) ) -> ( W " ( 0 ..^ ( # ` W ) ) ) = ran W ) | 
						
							| 73 | 71 72 | syl |  |-  ( ph -> ( W " ( 0 ..^ ( # ` W ) ) ) = ran W ) | 
						
							| 74 |  | elfzuz3 |  |-  ( E e. ( 0 ... ( # ` W ) ) -> ( # ` W ) e. ( ZZ>= ` E ) ) | 
						
							| 75 |  | fzoss2 |  |-  ( ( # ` W ) e. ( ZZ>= ` E ) -> ( 0 ..^ E ) C_ ( 0 ..^ ( # ` W ) ) ) | 
						
							| 76 | 51 74 75 | 3syl |  |-  ( ph -> ( 0 ..^ E ) C_ ( 0 ..^ ( # ` W ) ) ) | 
						
							| 77 |  | fz0ssnn0 |  |-  ( 0 ... ( # ` W ) ) C_ NN0 | 
						
							| 78 | 77 51 | sselid |  |-  ( ph -> E e. NN0 ) | 
						
							| 79 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 80 | 78 79 | eleqtrdi |  |-  ( ph -> E e. ( ZZ>= ` 0 ) ) | 
						
							| 81 |  | fzoss1 |  |-  ( E e. ( ZZ>= ` 0 ) -> ( E ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) ) | 
						
							| 82 | 80 81 | syl |  |-  ( ph -> ( E ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) ) | 
						
							| 83 |  | unima |  |-  ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ ( 0 ..^ E ) C_ ( 0 ..^ ( # ` W ) ) /\ ( E ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) ) -> ( W " ( ( 0 ..^ E ) u. ( E ..^ ( # ` W ) ) ) ) = ( ( W " ( 0 ..^ E ) ) u. ( W " ( E ..^ ( # ` W ) ) ) ) ) | 
						
							| 84 | 71 76 82 83 | syl3anc |  |-  ( ph -> ( W " ( ( 0 ..^ E ) u. ( E ..^ ( # ` W ) ) ) ) = ( ( W " ( 0 ..^ E ) ) u. ( W " ( E ..^ ( # ` W ) ) ) ) ) | 
						
							| 85 | 68 73 84 | 3eqtr3d |  |-  ( ph -> ran W = ( ( W " ( 0 ..^ E ) ) u. ( W " ( E ..^ ( # ` W ) ) ) ) ) | 
						
							| 86 | 85 | uneq1d |  |-  ( ph -> ( ran W u. { I } ) = ( ( ( W " ( 0 ..^ E ) ) u. ( W " ( E ..^ ( # ` W ) ) ) ) u. { I } ) ) | 
						
							| 87 | 9 65 86 | 3eqtr4a |  |-  ( ph -> ran U = ( ran W u. { I } ) ) |