Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmco2.c |
|- M = ( toCyc ` D ) |
2 |
|
cycpmco2.s |
|- S = ( SymGrp ` D ) |
3 |
|
cycpmco2.d |
|- ( ph -> D e. V ) |
4 |
|
cycpmco2.w |
|- ( ph -> W e. dom M ) |
5 |
|
cycpmco2.i |
|- ( ph -> I e. ( D \ ran W ) ) |
6 |
|
cycpmco2.j |
|- ( ph -> J e. ran W ) |
7 |
|
cycpmco2.e |
|- E = ( ( `' W ` J ) + 1 ) |
8 |
|
cycpmco2.1 |
|- U = ( W splice <. E , E , <" I "> >. ) |
9 |
5
|
eldifad |
|- ( ph -> I e. D ) |
10 |
|
ssrab2 |
|- { w e. Word D | w : dom w -1-1-> D } C_ Word D |
11 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
12 |
1 2 11
|
tocycf |
|- ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
13 |
3 12
|
syl |
|- ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
14 |
13
|
fdmd |
|- ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) |
15 |
4 14
|
eleqtrd |
|- ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) |
16 |
10 15
|
sselid |
|- ( ph -> W e. Word D ) |
17 |
|
id |
|- ( w = W -> w = W ) |
18 |
|
dmeq |
|- ( w = W -> dom w = dom W ) |
19 |
|
eqidd |
|- ( w = W -> D = D ) |
20 |
17 18 19
|
f1eq123d |
|- ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) |
21 |
20
|
elrab3 |
|- ( W e. Word D -> ( W e. { w e. Word D | w : dom w -1-1-> D } <-> W : dom W -1-1-> D ) ) |
22 |
21
|
biimpa |
|- ( ( W e. Word D /\ W e. { w e. Word D | w : dom w -1-1-> D } ) -> W : dom W -1-1-> D ) |
23 |
16 15 22
|
syl2anc |
|- ( ph -> W : dom W -1-1-> D ) |
24 |
|
f1f |
|- ( W : dom W -1-1-> D -> W : dom W --> D ) |
25 |
23 24
|
syl |
|- ( ph -> W : dom W --> D ) |
26 |
25
|
frnd |
|- ( ph -> ran W C_ D ) |
27 |
26 6
|
sseldd |
|- ( ph -> J e. D ) |
28 |
5
|
eldifbd |
|- ( ph -> -. I e. ran W ) |
29 |
|
nelne2 |
|- ( ( J e. ran W /\ -. I e. ran W ) -> J =/= I ) |
30 |
6 28 29
|
syl2anc |
|- ( ph -> J =/= I ) |
31 |
30
|
necomd |
|- ( ph -> I =/= J ) |
32 |
1 3 9 27 31 2
|
cyc2fv1 |
|- ( ph -> ( ( M ` <" I J "> ) ` I ) = J ) |
33 |
32
|
fveq2d |
|- ( ph -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` I ) ) = ( ( M ` W ) ` J ) ) |