| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c |  |-  M = ( toCyc ` D ) | 
						
							| 2 |  | cycpmco2.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpmco2.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | cycpmco2.w |  |-  ( ph -> W e. dom M ) | 
						
							| 5 |  | cycpmco2.i |  |-  ( ph -> I e. ( D \ ran W ) ) | 
						
							| 6 |  | cycpmco2.j |  |-  ( ph -> J e. ran W ) | 
						
							| 7 |  | cycpmco2.e |  |-  E = ( ( `' W ` J ) + 1 ) | 
						
							| 8 |  | cycpmco2.1 |  |-  U = ( W splice <. E , E , <" I "> >. ) | 
						
							| 9 | 5 | eldifad |  |-  ( ph -> I e. D ) | 
						
							| 10 |  | ssrab2 |  |-  { w e. Word D | w : dom w -1-1-> D } C_ Word D | 
						
							| 11 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 12 | 1 2 11 | tocycf |  |-  ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 13 | 3 12 | syl |  |-  ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 14 | 13 | fdmd |  |-  ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 15 | 4 14 | eleqtrd |  |-  ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 16 | 10 15 | sselid |  |-  ( ph -> W e. Word D ) | 
						
							| 17 |  | id |  |-  ( w = W -> w = W ) | 
						
							| 18 |  | dmeq |  |-  ( w = W -> dom w = dom W ) | 
						
							| 19 |  | eqidd |  |-  ( w = W -> D = D ) | 
						
							| 20 | 17 18 19 | f1eq123d |  |-  ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) | 
						
							| 21 | 20 | elrab3 |  |-  ( W e. Word D -> ( W e. { w e. Word D | w : dom w -1-1-> D } <-> W : dom W -1-1-> D ) ) | 
						
							| 22 | 21 | biimpa |  |-  ( ( W e. Word D /\ W e. { w e. Word D | w : dom w -1-1-> D } ) -> W : dom W -1-1-> D ) | 
						
							| 23 | 16 15 22 | syl2anc |  |-  ( ph -> W : dom W -1-1-> D ) | 
						
							| 24 |  | f1f |  |-  ( W : dom W -1-1-> D -> W : dom W --> D ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> W : dom W --> D ) | 
						
							| 26 | 25 | frnd |  |-  ( ph -> ran W C_ D ) | 
						
							| 27 | 26 6 | sseldd |  |-  ( ph -> J e. D ) | 
						
							| 28 | 5 | eldifbd |  |-  ( ph -> -. I e. ran W ) | 
						
							| 29 |  | nelne2 |  |-  ( ( J e. ran W /\ -. I e. ran W ) -> J =/= I ) | 
						
							| 30 | 6 28 29 | syl2anc |  |-  ( ph -> J =/= I ) | 
						
							| 31 | 30 | necomd |  |-  ( ph -> I =/= J ) | 
						
							| 32 | 1 3 9 27 31 2 | cyc2fv1 |  |-  ( ph -> ( ( M ` <" I J "> ) ` I ) = J ) | 
						
							| 33 | 32 | fveq2d |  |-  ( ph -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` I ) ) = ( ( M ` W ) ` J ) ) |