Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmco2.c |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
2 |
|
cycpmco2.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
3 |
|
cycpmco2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
4 |
|
cycpmco2.w |
⊢ ( 𝜑 → 𝑊 ∈ dom 𝑀 ) |
5 |
|
cycpmco2.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
6 |
|
cycpmco2.j |
⊢ ( 𝜑 → 𝐽 ∈ ran 𝑊 ) |
7 |
|
cycpmco2.e |
⊢ 𝐸 = ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) |
8 |
|
cycpmco2.1 |
⊢ 𝑈 = ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) |
9 |
5
|
eldifad |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
10 |
|
ssrab2 |
⊢ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⊆ Word 𝐷 |
11 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
12 |
1 2 11
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
14 |
13
|
fdmd |
⊢ ( 𝜑 → dom 𝑀 = { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
15 |
4 14
|
eleqtrd |
⊢ ( 𝜑 → 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
16 |
10 15
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
17 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
18 |
|
dmeq |
⊢ ( 𝑤 = 𝑊 → dom 𝑤 = dom 𝑊 ) |
19 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝐷 = 𝐷 ) |
20 |
17 18 19
|
f1eq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
21 |
20
|
elrab3 |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
22 |
21
|
biimpa |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
23 |
16 15 22
|
syl2anc |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
24 |
|
f1f |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → 𝑊 : dom 𝑊 ⟶ 𝐷 ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 ⟶ 𝐷 ) |
26 |
25
|
frnd |
⊢ ( 𝜑 → ran 𝑊 ⊆ 𝐷 ) |
27 |
26 6
|
sseldd |
⊢ ( 𝜑 → 𝐽 ∈ 𝐷 ) |
28 |
5
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝐼 ∈ ran 𝑊 ) |
29 |
|
nelne2 |
⊢ ( ( 𝐽 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊 ) → 𝐽 ≠ 𝐼 ) |
30 |
6 28 29
|
syl2anc |
⊢ ( 𝜑 → 𝐽 ≠ 𝐼 ) |
31 |
30
|
necomd |
⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) |
32 |
1 3 9 27 31 2
|
cyc2fv1 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) = 𝐽 ) |
33 |
32
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) ) |