Metamath Proof Explorer


Theorem cycpmco2lem1

Description: Lemma for cycpmco2 . (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c 𝑀 = ( toCyc ‘ 𝐷 )
cycpmco2.s 𝑆 = ( SymGrp ‘ 𝐷 )
cycpmco2.d ( 𝜑𝐷𝑉 )
cycpmco2.w ( 𝜑𝑊 ∈ dom 𝑀 )
cycpmco2.i ( 𝜑𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) )
cycpmco2.j ( 𝜑𝐽 ∈ ran 𝑊 )
cycpmco2.e 𝐸 = ( ( 𝑊𝐽 ) + 1 )
cycpmco2.1 𝑈 = ( 𝑊 splice ⟨ 𝐸 , 𝐸 , ⟨“ 𝐼 ”⟩ ⟩ )
Assertion cycpmco2lem1 ( 𝜑 → ( ( 𝑀𝑊 ) ‘ ( ( 𝑀 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ 𝐼 ) ) = ( ( 𝑀𝑊 ) ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 cycpmco2.c 𝑀 = ( toCyc ‘ 𝐷 )
2 cycpmco2.s 𝑆 = ( SymGrp ‘ 𝐷 )
3 cycpmco2.d ( 𝜑𝐷𝑉 )
4 cycpmco2.w ( 𝜑𝑊 ∈ dom 𝑀 )
5 cycpmco2.i ( 𝜑𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) )
6 cycpmco2.j ( 𝜑𝐽 ∈ ran 𝑊 )
7 cycpmco2.e 𝐸 = ( ( 𝑊𝐽 ) + 1 )
8 cycpmco2.1 𝑈 = ( 𝑊 splice ⟨ 𝐸 , 𝐸 , ⟨“ 𝐼 ”⟩ ⟩ )
9 5 eldifad ( 𝜑𝐼𝐷 )
10 ssrab2 { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ⊆ Word 𝐷
11 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
12 1 2 11 tocycf ( 𝐷𝑉𝑀 : { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ⟶ ( Base ‘ 𝑆 ) )
13 3 12 syl ( 𝜑𝑀 : { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ⟶ ( Base ‘ 𝑆 ) )
14 13 fdmd ( 𝜑 → dom 𝑀 = { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } )
15 4 14 eleqtrd ( 𝜑𝑊 ∈ { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } )
16 10 15 sselid ( 𝜑𝑊 ∈ Word 𝐷 )
17 id ( 𝑤 = 𝑊𝑤 = 𝑊 )
18 dmeq ( 𝑤 = 𝑊 → dom 𝑤 = dom 𝑊 )
19 eqidd ( 𝑤 = 𝑊𝐷 = 𝐷 )
20 17 18 19 f1eq123d ( 𝑤 = 𝑊 → ( 𝑤 : dom 𝑤1-1𝐷𝑊 : dom 𝑊1-1𝐷 ) )
21 20 elrab3 ( 𝑊 ∈ Word 𝐷 → ( 𝑊 ∈ { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ↔ 𝑊 : dom 𝑊1-1𝐷 ) )
22 21 biimpa ( ( 𝑊 ∈ Word 𝐷𝑊 ∈ { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ) → 𝑊 : dom 𝑊1-1𝐷 )
23 16 15 22 syl2anc ( 𝜑𝑊 : dom 𝑊1-1𝐷 )
24 f1f ( 𝑊 : dom 𝑊1-1𝐷𝑊 : dom 𝑊𝐷 )
25 23 24 syl ( 𝜑𝑊 : dom 𝑊𝐷 )
26 25 frnd ( 𝜑 → ran 𝑊𝐷 )
27 26 6 sseldd ( 𝜑𝐽𝐷 )
28 5 eldifbd ( 𝜑 → ¬ 𝐼 ∈ ran 𝑊 )
29 nelne2 ( ( 𝐽 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊 ) → 𝐽𝐼 )
30 6 28 29 syl2anc ( 𝜑𝐽𝐼 )
31 30 necomd ( 𝜑𝐼𝐽 )
32 1 3 9 27 31 2 cyc2fv1 ( 𝜑 → ( ( 𝑀 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ 𝐼 ) = 𝐽 )
33 32 fveq2d ( 𝜑 → ( ( 𝑀𝑊 ) ‘ ( ( 𝑀 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ 𝐼 ) ) = ( ( 𝑀𝑊 ) ‘ 𝐽 ) )