| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 2 |  | cycpmco2.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpmco2.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | cycpmco2.w | ⊢ ( 𝜑  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 5 |  | cycpmco2.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 6 |  | cycpmco2.j | ⊢ ( 𝜑  →  𝐽  ∈  ran  𝑊 ) | 
						
							| 7 |  | cycpmco2.e | ⊢ 𝐸  =  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) | 
						
							| 8 |  | cycpmco2.1 | ⊢ 𝑈  =  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) | 
						
							| 9 | 5 | eldifad | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 10 |  | ssrab2 | ⊢ { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ⊆  Word  𝐷 | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 12 | 1 2 11 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 14 | 13 | fdmd | ⊢ ( 𝜑  →  dom  𝑀  =  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 15 | 4 14 | eleqtrd | ⊢ ( 𝜑  →  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 16 | 10 15 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 17 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 18 |  | dmeq | ⊢ ( 𝑤  =  𝑊  →  dom  𝑤  =  dom  𝑊 ) | 
						
							| 19 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝐷  =  𝐷 ) | 
						
							| 20 | 17 18 19 | f1eq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 21 | 20 | elrab3 | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 22 | 21 | biimpa | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } )  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 23 | 16 15 22 | syl2anc | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 24 |  | f1f | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  𝑊 : dom  𝑊 ⟶ 𝐷 ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 ⟶ 𝐷 ) | 
						
							| 26 | 25 | frnd | ⊢ ( 𝜑  →  ran  𝑊  ⊆  𝐷 ) | 
						
							| 27 | 26 6 | sseldd | ⊢ ( 𝜑  →  𝐽  ∈  𝐷 ) | 
						
							| 28 | 5 | eldifbd | ⊢ ( 𝜑  →  ¬  𝐼  ∈  ran  𝑊 ) | 
						
							| 29 |  | nelne2 | ⊢ ( ( 𝐽  ∈  ran  𝑊  ∧  ¬  𝐼  ∈  ran  𝑊 )  →  𝐽  ≠  𝐼 ) | 
						
							| 30 | 6 28 29 | syl2anc | ⊢ ( 𝜑  →  𝐽  ≠  𝐼 ) | 
						
							| 31 | 30 | necomd | ⊢ ( 𝜑  →  𝐼  ≠  𝐽 ) | 
						
							| 32 | 1 3 9 27 31 2 | cyc2fv1 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 )  =  𝐽 ) | 
						
							| 33 | 32 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) ) |