| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmco2.c |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
| 2 |
|
cycpmco2.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 3 |
|
cycpmco2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 4 |
|
cycpmco2.w |
⊢ ( 𝜑 → 𝑊 ∈ dom 𝑀 ) |
| 5 |
|
cycpmco2.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
| 6 |
|
cycpmco2.j |
⊢ ( 𝜑 → 𝐽 ∈ ran 𝑊 ) |
| 7 |
|
cycpmco2.e |
⊢ 𝐸 = ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) |
| 8 |
|
cycpmco2.1 |
⊢ 𝑈 = ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 10 |
1 2 9
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
| 11 |
3 10
|
syl |
⊢ ( 𝜑 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
| 12 |
11
|
fdmd |
⊢ ( 𝜑 → dom 𝑀 = { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 13 |
4 12
|
eleqtrd |
⊢ ( 𝜑 → 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 14 |
11 13
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑊 ) ∈ ( Base ‘ 𝑆 ) ) |
| 15 |
2 9
|
symgbasf |
⊢ ( ( 𝑀 ‘ 𝑊 ) ∈ ( Base ‘ 𝑆 ) → ( 𝑀 ‘ 𝑊 ) : 𝐷 ⟶ 𝐷 ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑊 ) : 𝐷 ⟶ 𝐷 ) |
| 17 |
16
|
ffnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑊 ) Fn 𝐷 ) |
| 18 |
5
|
eldifad |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
| 19 |
|
ssrab2 |
⊢ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⊆ Word 𝐷 |
| 20 |
19 13
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
| 21 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
| 22 |
|
dmeq |
⊢ ( 𝑤 = 𝑊 → dom 𝑤 = dom 𝑊 ) |
| 23 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝐷 = 𝐷 ) |
| 24 |
21 22 23
|
f1eq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
| 25 |
24
|
elrab3 |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
| 26 |
25
|
biimpa |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
| 27 |
20 13 26
|
syl2anc |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
| 28 |
|
f1f |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → 𝑊 : dom 𝑊 ⟶ 𝐷 ) |
| 29 |
27 28
|
syl |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 ⟶ 𝐷 ) |
| 30 |
29
|
frnd |
⊢ ( 𝜑 → ran 𝑊 ⊆ 𝐷 ) |
| 31 |
30 6
|
sseldd |
⊢ ( 𝜑 → 𝐽 ∈ 𝐷 ) |
| 32 |
5
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝐼 ∈ ran 𝑊 ) |
| 33 |
|
nelne2 |
⊢ ( ( 𝐽 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊 ) → 𝐽 ≠ 𝐼 ) |
| 34 |
6 32 33
|
syl2anc |
⊢ ( 𝜑 → 𝐽 ≠ 𝐼 ) |
| 35 |
34
|
necomd |
⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) |
| 36 |
1 3 18 31 35 2
|
cycpm2cl |
⊢ ( 𝜑 → ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ∈ ( Base ‘ 𝑆 ) ) |
| 37 |
2 9
|
symgbasf |
⊢ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ∈ ( Base ‘ 𝑆 ) → ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) : 𝐷 ⟶ 𝐷 ) |
| 38 |
36 37
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) : 𝐷 ⟶ 𝐷 ) |
| 39 |
38
|
ffnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) Fn 𝐷 ) |
| 40 |
38
|
frnd |
⊢ ( 𝜑 → ran ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ⊆ 𝐷 ) |
| 41 |
|
fnco |
⊢ ( ( ( 𝑀 ‘ 𝑊 ) Fn 𝐷 ∧ ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) Fn 𝐷 ∧ ran ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ⊆ 𝐷 ) → ( ( 𝑀 ‘ 𝑊 ) ∘ ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ) Fn 𝐷 ) |
| 42 |
17 39 40 41
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ∘ ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ) Fn 𝐷 ) |
| 43 |
18
|
s1cld |
⊢ ( 𝜑 → 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) |
| 44 |
|
splcl |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ∈ Word 𝐷 ) |
| 45 |
20 43 44
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ∈ Word 𝐷 ) |
| 46 |
8 45
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ Word 𝐷 ) |
| 47 |
1 2 3 4 5 6 7 8
|
cycpmco2f1 |
⊢ ( 𝜑 → 𝑈 : dom 𝑈 –1-1→ 𝐷 ) |
| 48 |
1 3 46 47 2
|
cycpmcl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑈 ) ∈ ( Base ‘ 𝑆 ) ) |
| 49 |
2 9
|
symgbasf |
⊢ ( ( 𝑀 ‘ 𝑈 ) ∈ ( Base ‘ 𝑆 ) → ( 𝑀 ‘ 𝑈 ) : 𝐷 ⟶ 𝐷 ) |
| 50 |
48 49
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑈 ) : 𝐷 ⟶ 𝐷 ) |
| 51 |
50
|
ffnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑈 ) Fn 𝐷 ) |
| 52 |
|
fvco3 |
⊢ ( ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) : 𝐷 ⟶ 𝐷 ∧ 𝑖 ∈ 𝐷 ) → ( ( ( 𝑀 ‘ 𝑊 ) ∘ ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ) ‘ 𝑖 ) = ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) ) |
| 53 |
38 52
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → ( ( ( 𝑀 ‘ 𝑊 ) ∘ ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ) ‘ 𝑖 ) = ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) ) |
| 54 |
1 3 18 31 35 2
|
cyc2fv2 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 ) = 𝐼 ) |
| 55 |
54
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐼 ) ) |
| 56 |
1 2 3 4 5 6 7 8
|
cycpmco2lem2 |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐸 ) = 𝐼 ) |
| 57 |
|
f1cnv |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
| 58 |
|
f1of |
⊢ ( ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
| 59 |
27 57 58
|
3syl |
⊢ ( 𝜑 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
| 60 |
59 6
|
ffvelcdmd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ dom 𝑊 ) |
| 61 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐷 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 62 |
20 61
|
syl |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 63 |
60 62
|
eleqtrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 64 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 65 |
20 64
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 66 |
65
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 67 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 68 |
|
ovexd |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ V ) |
| 69 |
7 68
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
| 70 |
|
splval |
⊢ ( ( 𝑊 ∈ dom 𝑀 ∧ ( 𝐸 ∈ V ∧ 𝐸 ∈ V ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) ) → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
| 71 |
4 69 69 43 70
|
syl13anc |
⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
| 72 |
8 71
|
eqtrid |
⊢ ( 𝜑 → 𝑈 = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
| 73 |
72
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
| 74 |
|
pfxcl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ) |
| 75 |
20 74
|
syl |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ) |
| 76 |
|
ccatcl |
⊢ ( ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ) |
| 77 |
75 43 76
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ) |
| 78 |
|
swrdcl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) |
| 79 |
20 78
|
syl |
⊢ ( 𝜑 → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) |
| 80 |
|
ccatlen |
⊢ ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ∧ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) → ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
| 81 |
77 79 80
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
| 82 |
|
ccatws1len |
⊢ ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) ) |
| 83 |
20 74 82
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) ) |
| 84 |
|
fzofzp1 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 85 |
63 84
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 86 |
7 85
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 87 |
|
pfxlen |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) = 𝐸 ) |
| 88 |
20 86 87
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) = 𝐸 ) |
| 89 |
88
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) = ( 𝐸 + 1 ) ) |
| 90 |
83 89
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( 𝐸 + 1 ) ) |
| 91 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 92 |
65 91
|
sylib |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 93 |
|
swrdlen |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) |
| 94 |
20 86 92 93
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) |
| 95 |
90 94
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
| 96 |
73 81 95
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
| 97 |
|
fz0ssnn0 |
⊢ ( 0 ... ( ♯ ‘ 𝑊 ) ) ⊆ ℕ0 |
| 98 |
97 86
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
| 99 |
98
|
nn0zd |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
| 100 |
99
|
peano2zd |
⊢ ( 𝜑 → ( 𝐸 + 1 ) ∈ ℤ ) |
| 101 |
100
|
zcnd |
⊢ ( 𝜑 → ( 𝐸 + 1 ) ∈ ℂ ) |
| 102 |
98
|
nn0cnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 103 |
101 66 102
|
addsubassd |
⊢ ( 𝜑 → ( ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) − 𝐸 ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
| 104 |
102 67 66
|
addassd |
⊢ ( 𝜑 → ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) = ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) ) |
| 105 |
104
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) − 𝐸 ) = ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) ) |
| 106 |
96 103 105
|
3eqtr2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) ) |
| 107 |
67 66
|
addcld |
⊢ ( 𝜑 → ( 1 + ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) |
| 108 |
102 107
|
pncan2d |
⊢ ( 𝜑 → ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) = ( 1 + ( ♯ ‘ 𝑊 ) ) ) |
| 109 |
67 66
|
addcomd |
⊢ ( 𝜑 → ( 1 + ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 110 |
106 108 109
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 111 |
66 67 110
|
mvrraddd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) − 1 ) = ( ♯ ‘ 𝑊 ) ) |
| 112 |
111
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 113 |
63 112
|
eleqtrrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 114 |
1 3 46 47 113
|
cycpmfv1 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) = ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ) ) |
| 115 |
7
|
fveq2i |
⊢ ( 𝑈 ‘ 𝐸 ) = ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ) |
| 116 |
114 115
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) = ( 𝑈 ‘ 𝐸 ) ) |
| 117 |
1 3 20 27 18 32
|
cycpmfv3 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐼 ) = 𝐼 ) |
| 118 |
56 116 117
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐼 ) ) |
| 119 |
72
|
fveq1d |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) |
| 120 |
|
fzossfzop1 |
⊢ ( 𝐸 ∈ ℕ0 → ( 0 ..^ 𝐸 ) ⊆ ( 0 ..^ ( 𝐸 + 1 ) ) ) |
| 121 |
98 120
|
syl |
⊢ ( 𝜑 → ( 0 ..^ 𝐸 ) ⊆ ( 0 ..^ ( 𝐸 + 1 ) ) ) |
| 122 |
|
elfzonn0 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℕ0 ) |
| 123 |
|
fzonn0p1 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℕ0 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ) ) |
| 124 |
63 122 123
|
3syl |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ) ) |
| 125 |
7
|
oveq2i |
⊢ ( 0 ..^ 𝐸 ) = ( 0 ..^ ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ) |
| 126 |
124 125
|
eleqtrrdi |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ 𝐸 ) ) |
| 127 |
121 126
|
sseldd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( 𝐸 + 1 ) ) ) |
| 128 |
90
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) = ( 0 ..^ ( 𝐸 + 1 ) ) ) |
| 129 |
127 128
|
eleqtrrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) ) |
| 130 |
|
ccatval1 |
⊢ ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ∧ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ∧ ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) ) → ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) |
| 131 |
77 79 129 130
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) |
| 132 |
88
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) ) = ( 0 ..^ 𝐸 ) ) |
| 133 |
126 132
|
eleqtrrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) ) ) |
| 134 |
|
ccatval1 |
⊢ ( ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ∧ ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) ) ) → ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = ( ( 𝑊 prefix 𝐸 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) |
| 135 |
75 43 133 134
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = ( ( 𝑊 prefix 𝐸 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) |
| 136 |
119 131 135
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = ( ( 𝑊 prefix 𝐸 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) |
| 137 |
|
pfxfv |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ 𝐸 ) ) → ( ( 𝑊 prefix 𝐸 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) |
| 138 |
20 86 126 137
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑊 prefix 𝐸 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) |
| 139 |
|
f1f1orn |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
| 140 |
27 139
|
syl |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
| 141 |
|
f1ocnvfv2 |
⊢ ( ( 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ∧ 𝐽 ∈ ran 𝑊 ) → ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = 𝐽 ) |
| 142 |
140 6 141
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = 𝐽 ) |
| 143 |
136 138 142
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = 𝐽 ) |
| 144 |
143
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐽 ) ) |
| 145 |
55 118 144
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐽 ) ) |
| 146 |
145
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 = 𝐽 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐽 ) ) |
| 147 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 = 𝐽 ) → 𝑖 = 𝐽 ) |
| 148 |
147
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 = 𝐽 ) → ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) = ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 ) ) |
| 149 |
148
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 = 𝐽 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 ) ) ) |
| 150 |
147
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 = 𝐽 ) → ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐽 ) ) |
| 151 |
146 149 150
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 = 𝐽 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) |
| 152 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → 𝐷 ∈ 𝑉 ) |
| 153 |
18 31
|
s2cld |
⊢ ( 𝜑 → 〈“ 𝐼 𝐽 ”〉 ∈ Word 𝐷 ) |
| 154 |
153
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → 〈“ 𝐼 𝐽 ”〉 ∈ Word 𝐷 ) |
| 155 |
18 31 35
|
s2f1 |
⊢ ( 𝜑 → 〈“ 𝐼 𝐽 ”〉 : dom 〈“ 𝐼 𝐽 ”〉 –1-1→ 𝐷 ) |
| 156 |
155
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → 〈“ 𝐼 𝐽 ”〉 : dom 〈“ 𝐼 𝐽 ”〉 –1-1→ 𝐷 ) |
| 157 |
30
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → 𝑖 ∈ 𝐷 ) |
| 158 |
157
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → 𝑖 ∈ 𝐷 ) |
| 159 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → 𝑖 ∈ ran 𝑊 ) |
| 160 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → ¬ 𝐼 ∈ ran 𝑊 ) |
| 161 |
|
nelne2 |
⊢ ( ( 𝑖 ∈ ran 𝑊 ∧ ¬ 𝐼 ∈ ran 𝑊 ) → 𝑖 ≠ 𝐼 ) |
| 162 |
159 160 161
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → 𝑖 ≠ 𝐼 ) |
| 163 |
162
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → 𝑖 ≠ 𝐼 ) |
| 164 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → 𝑖 ≠ 𝐽 ) |
| 165 |
163 164
|
nelprd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → ¬ 𝑖 ∈ { 𝐼 , 𝐽 } ) |
| 166 |
18 31
|
s2rn |
⊢ ( 𝜑 → ran 〈“ 𝐼 𝐽 ”〉 = { 𝐼 , 𝐽 } ) |
| 167 |
166
|
eleq2d |
⊢ ( 𝜑 → ( 𝑖 ∈ ran 〈“ 𝐼 𝐽 ”〉 ↔ 𝑖 ∈ { 𝐼 , 𝐽 } ) ) |
| 168 |
167
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑖 ∈ ran 〈“ 𝐼 𝐽 ”〉 ↔ ¬ 𝑖 ∈ { 𝐼 , 𝐽 } ) ) |
| 169 |
168
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → ( ¬ 𝑖 ∈ ran 〈“ 𝐼 𝐽 ”〉 ↔ ¬ 𝑖 ∈ { 𝐼 , 𝐽 } ) ) |
| 170 |
165 169
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → ¬ 𝑖 ∈ ran 〈“ 𝐼 𝐽 ”〉 ) |
| 171 |
1 152 154 156 158 170
|
cycpmfv3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) = 𝑖 ) |
| 172 |
171
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) |
| 173 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ) → 𝐷 ∈ 𝑉 ) |
| 174 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ) → 𝑊 ∈ dom 𝑀 ) |
| 175 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ) → 𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
| 176 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ) → 𝐽 ∈ ran 𝑊 ) |
| 177 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ) → 𝑖 ∈ ran 𝑊 ) |
| 178 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ) → 𝑖 ≠ 𝐽 ) |
| 179 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ) → ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ) |
| 180 |
1 2 173 174 175 176 7 8 177 178 179
|
cycpmco2lem7 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ) → ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) |
| 181 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) → 𝐷 ∈ 𝑉 ) |
| 182 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) → 𝑊 ∈ dom 𝑀 ) |
| 183 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) → 𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
| 184 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) → 𝐽 ∈ ran 𝑊 ) |
| 185 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) → 𝑖 ∈ ran 𝑊 ) |
| 186 |
162
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) → 𝑖 ≠ 𝐼 ) |
| 187 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) → ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 188 |
1 2 181 182 183 184 7 8 185 186 187
|
cycpmco2lem6 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) → ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) |
| 189 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) → 𝐷 ∈ 𝑉 ) |
| 190 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) → 𝑊 ∈ dom 𝑀 ) |
| 191 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) → 𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
| 192 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) → 𝐽 ∈ ran 𝑊 ) |
| 193 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) → 𝑖 ∈ ran 𝑊 ) |
| 194 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) → ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) |
| 195 |
1 2 189 190 191 192 7 8 193 194
|
cycpmco2lem5 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) → ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) |
| 196 |
|
f1f1orn |
⊢ ( 𝑈 : dom 𝑈 –1-1→ 𝐷 → 𝑈 : dom 𝑈 –1-1-onto→ ran 𝑈 ) |
| 197 |
47 196
|
syl |
⊢ ( 𝜑 → 𝑈 : dom 𝑈 –1-1-onto→ ran 𝑈 ) |
| 198 |
|
ssun1 |
⊢ ran 𝑊 ⊆ ( ran 𝑊 ∪ { 𝐼 } ) |
| 199 |
1 2 3 4 5 6 7 8
|
cycpmco2rn |
⊢ ( 𝜑 → ran 𝑈 = ( ran 𝑊 ∪ { 𝐼 } ) ) |
| 200 |
198 199
|
sseqtrrid |
⊢ ( 𝜑 → ran 𝑊 ⊆ ran 𝑈 ) |
| 201 |
200
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → 𝑖 ∈ ran 𝑈 ) |
| 202 |
|
f1ocnvdm |
⊢ ( ( 𝑈 : dom 𝑈 –1-1-onto→ ran 𝑈 ∧ 𝑖 ∈ ran 𝑈 ) → ( ◡ 𝑈 ‘ 𝑖 ) ∈ dom 𝑈 ) |
| 203 |
197 201 202
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → ( ◡ 𝑈 ‘ 𝑖 ) ∈ dom 𝑈 ) |
| 204 |
|
wrddm |
⊢ ( 𝑈 ∈ Word 𝐷 → dom 𝑈 = ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) |
| 205 |
46 204
|
syl |
⊢ ( 𝜑 → dom 𝑈 = ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) |
| 206 |
205
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → dom 𝑈 = ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) |
| 207 |
203 206
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) |
| 208 |
65
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 209 |
208
|
peano2zd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + 1 ) ∈ ℤ ) |
| 210 |
110 209
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) ∈ ℤ ) |
| 211 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝑈 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑈 ) ) = ( 0 ... ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 212 |
210 211
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑈 ) ) = ( 0 ... ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 213 |
212
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → ( 0 ..^ ( ♯ ‘ 𝑈 ) ) = ( 0 ... ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 214 |
207 213
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 215 |
|
elfzr |
⊢ ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑈 ) − 1 ) ) → ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 216 |
214 215
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 217 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) → ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 218 |
99
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) → 𝐸 ∈ ℤ ) |
| 219 |
|
fzospliti |
⊢ ( ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ∧ 𝐸 ∈ ℤ ) → ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) ) |
| 220 |
217 218 219
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) → ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) ) |
| 221 |
220
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) → ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) ) ) |
| 222 |
221
|
orim1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → ( ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) → ( ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) ) |
| 223 |
216 222
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → ( ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 224 |
|
df-3or |
⊢ ( ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) ↔ ( ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 225 |
223 224
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 226 |
225
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → ( ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 0 ..^ 𝐸 ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ∨ ( ◡ 𝑈 ‘ 𝑖 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 227 |
180 188 195 226
|
mpjao3dan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) |
| 228 |
172 227
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) ∧ 𝑖 ≠ 𝐽 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) |
| 229 |
151 228
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ran 𝑊 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) |
| 230 |
229
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) ∧ 𝑖 ∈ ran 𝑊 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) |
| 231 |
1 2 3 4 5 6 7 8
|
cycpmco2lem4 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) |
| 232 |
231
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 = 𝐼 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) |
| 233 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 = 𝐼 ) → 𝑖 = 𝐼 ) |
| 234 |
233
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 = 𝐼 ) → ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) = ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) ) |
| 235 |
234
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 = 𝐼 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) ) ) |
| 236 |
233
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 = 𝐼 ) → ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) |
| 237 |
232 235 236
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 = 𝐼 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) |
| 238 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → 𝐷 ∈ 𝑉 ) |
| 239 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → 𝑊 ∈ Word 𝐷 ) |
| 240 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
| 241 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
| 242 |
241
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → 𝑖 ∈ 𝐷 ) |
| 243 |
241
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ¬ 𝑖 ∈ ran 𝑊 ) |
| 244 |
1 238 239 240 242 243
|
cycpmfv3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) = 𝑖 ) |
| 245 |
153
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → 〈“ 𝐼 𝐽 ”〉 ∈ Word 𝐷 ) |
| 246 |
155
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → 〈“ 𝐼 𝐽 ”〉 : dom 〈“ 𝐼 𝐽 ”〉 –1-1→ 𝐷 ) |
| 247 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → 𝑖 ≠ 𝐼 ) |
| 248 |
|
eldifn |
⊢ ( 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) → ¬ 𝑖 ∈ ran 𝑊 ) |
| 249 |
|
nelne2 |
⊢ ( ( 𝐽 ∈ ran 𝑊 ∧ ¬ 𝑖 ∈ ran 𝑊 ) → 𝐽 ≠ 𝑖 ) |
| 250 |
6 248 249
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) → 𝐽 ≠ 𝑖 ) |
| 251 |
250
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) → 𝑖 ≠ 𝐽 ) |
| 252 |
251
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → 𝑖 ≠ 𝐽 ) |
| 253 |
247 252
|
nelprd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ¬ 𝑖 ∈ { 𝐼 , 𝐽 } ) |
| 254 |
168
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ( ¬ 𝑖 ∈ ran 〈“ 𝐼 𝐽 ”〉 ↔ ¬ 𝑖 ∈ { 𝐼 , 𝐽 } ) ) |
| 255 |
253 254
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ¬ 𝑖 ∈ ran 〈“ 𝐼 𝐽 ”〉 ) |
| 256 |
1 238 245 246 242 255
|
cycpmfv3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) = 𝑖 ) |
| 257 |
256
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) |
| 258 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → 𝑈 ∈ Word 𝐷 ) |
| 259 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → 𝑈 : dom 𝑈 –1-1→ 𝐷 ) |
| 260 |
199
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ran 𝑈 = ( ran 𝑊 ∪ { 𝐼 } ) ) |
| 261 |
|
nelsn |
⊢ ( 𝑖 ≠ 𝐼 → ¬ 𝑖 ∈ { 𝐼 } ) |
| 262 |
261
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ¬ 𝑖 ∈ { 𝐼 } ) |
| 263 |
|
nelun |
⊢ ( ran 𝑈 = ( ran 𝑊 ∪ { 𝐼 } ) → ( ¬ 𝑖 ∈ ran 𝑈 ↔ ( ¬ 𝑖 ∈ ran 𝑊 ∧ ¬ 𝑖 ∈ { 𝐼 } ) ) ) |
| 264 |
263
|
biimpar |
⊢ ( ( ran 𝑈 = ( ran 𝑊 ∪ { 𝐼 } ) ∧ ( ¬ 𝑖 ∈ ran 𝑊 ∧ ¬ 𝑖 ∈ { 𝐼 } ) ) → ¬ 𝑖 ∈ ran 𝑈 ) |
| 265 |
260 243 262 264
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ¬ 𝑖 ∈ ran 𝑈 ) |
| 266 |
1 238 258 259 242 265
|
cycpmfv3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) = 𝑖 ) |
| 267 |
244 257 266
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ∧ 𝑖 ≠ 𝐼 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) |
| 268 |
237 267
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) |
| 269 |
268
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) |
| 270 |
|
undif |
⊢ ( ran 𝑊 ⊆ 𝐷 ↔ ( ran 𝑊 ∪ ( 𝐷 ∖ ran 𝑊 ) ) = 𝐷 ) |
| 271 |
30 270
|
sylib |
⊢ ( 𝜑 → ( ran 𝑊 ∪ ( 𝐷 ∖ ran 𝑊 ) ) = 𝐷 ) |
| 272 |
271
|
eleq2d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( ran 𝑊 ∪ ( 𝐷 ∖ ran 𝑊 ) ) ↔ 𝑖 ∈ 𝐷 ) ) |
| 273 |
|
elun |
⊢ ( 𝑖 ∈ ( ran 𝑊 ∪ ( 𝐷 ∖ ran 𝑊 ) ) ↔ ( 𝑖 ∈ ran 𝑊 ∨ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ) |
| 274 |
272 273
|
bitr3di |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐷 ↔ ( 𝑖 ∈ ran 𝑊 ∨ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ) ) |
| 275 |
274
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → ( 𝑖 ∈ ran 𝑊 ∨ 𝑖 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ) |
| 276 |
230 269 275
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) |
| 277 |
53 276
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → ( ( ( 𝑀 ‘ 𝑊 ) ∘ ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ) ‘ 𝑖 ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) |
| 278 |
42 51 277
|
eqfnfvd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ∘ ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ) = ( 𝑀 ‘ 𝑈 ) ) |