| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 2 |  | cycpmco2.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpmco2.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | cycpmco2.w | ⊢ ( 𝜑  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 5 |  | cycpmco2.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 6 |  | cycpmco2.j | ⊢ ( 𝜑  →  𝐽  ∈  ran  𝑊 ) | 
						
							| 7 |  | cycpmco2.e | ⊢ 𝐸  =  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) | 
						
							| 8 |  | cycpmco2.1 | ⊢ 𝑈  =  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 10 | 1 2 9 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝜑  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 12 | 11 | fdmd | ⊢ ( 𝜑  →  dom  𝑀  =  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 13 | 4 12 | eleqtrd | ⊢ ( 𝜑  →  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 14 | 11 13 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑊 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 15 | 2 9 | symgbasf | ⊢ ( ( 𝑀 ‘ 𝑊 )  ∈  ( Base ‘ 𝑆 )  →  ( 𝑀 ‘ 𝑊 ) : 𝐷 ⟶ 𝐷 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑊 ) : 𝐷 ⟶ 𝐷 ) | 
						
							| 17 | 16 | ffnd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑊 )  Fn  𝐷 ) | 
						
							| 18 | 5 | eldifad | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 19 |  | ssrab2 | ⊢ { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ⊆  Word  𝐷 | 
						
							| 20 | 19 13 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 21 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 22 |  | dmeq | ⊢ ( 𝑤  =  𝑊  →  dom  𝑤  =  dom  𝑊 ) | 
						
							| 23 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝐷  =  𝐷 ) | 
						
							| 24 | 21 22 23 | f1eq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 25 | 24 | elrab3 | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 26 | 25 | biimpa | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } )  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 27 | 20 13 26 | syl2anc | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 28 |  | f1f | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  𝑊 : dom  𝑊 ⟶ 𝐷 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 ⟶ 𝐷 ) | 
						
							| 30 | 29 | frnd | ⊢ ( 𝜑  →  ran  𝑊  ⊆  𝐷 ) | 
						
							| 31 | 30 6 | sseldd | ⊢ ( 𝜑  →  𝐽  ∈  𝐷 ) | 
						
							| 32 | 5 | eldifbd | ⊢ ( 𝜑  →  ¬  𝐼  ∈  ran  𝑊 ) | 
						
							| 33 |  | nelne2 | ⊢ ( ( 𝐽  ∈  ran  𝑊  ∧  ¬  𝐼  ∈  ran  𝑊 )  →  𝐽  ≠  𝐼 ) | 
						
							| 34 | 6 32 33 | syl2anc | ⊢ ( 𝜑  →  𝐽  ≠  𝐼 ) | 
						
							| 35 | 34 | necomd | ⊢ ( 𝜑  →  𝐼  ≠  𝐽 ) | 
						
							| 36 | 1 3 18 31 35 2 | cycpm2cl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 37 | 2 9 | symgbasf | ⊢ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 )  ∈  ( Base ‘ 𝑆 )  →  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) : 𝐷 ⟶ 𝐷 ) | 
						
							| 38 | 36 37 | syl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) : 𝐷 ⟶ 𝐷 ) | 
						
							| 39 | 38 | ffnd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 )  Fn  𝐷 ) | 
						
							| 40 | 38 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 )  ⊆  𝐷 ) | 
						
							| 41 |  | fnco | ⊢ ( ( ( 𝑀 ‘ 𝑊 )  Fn  𝐷  ∧  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 )  Fn  𝐷  ∧  ran  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 )  ⊆  𝐷 )  →  ( ( 𝑀 ‘ 𝑊 )  ∘  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) )  Fn  𝐷 ) | 
						
							| 42 | 17 39 40 41 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 )  ∘  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) )  Fn  𝐷 ) | 
						
							| 43 | 18 | s1cld | ⊢ ( 𝜑  →  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) | 
						
							| 44 |  | splcl | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 )  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  ∈  Word  𝐷 ) | 
						
							| 45 | 20 43 44 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  ∈  Word  𝐷 ) | 
						
							| 46 | 8 45 | eqeltrid | ⊢ ( 𝜑  →  𝑈  ∈  Word  𝐷 ) | 
						
							| 47 | 1 2 3 4 5 6 7 8 | cycpmco2f1 | ⊢ ( 𝜑  →  𝑈 : dom  𝑈 –1-1→ 𝐷 ) | 
						
							| 48 | 1 3 46 47 2 | cycpmcl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑈 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 49 | 2 9 | symgbasf | ⊢ ( ( 𝑀 ‘ 𝑈 )  ∈  ( Base ‘ 𝑆 )  →  ( 𝑀 ‘ 𝑈 ) : 𝐷 ⟶ 𝐷 ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑈 ) : 𝐷 ⟶ 𝐷 ) | 
						
							| 51 | 50 | ffnd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑈 )  Fn  𝐷 ) | 
						
							| 52 |  | fvco3 | ⊢ ( ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) : 𝐷 ⟶ 𝐷  ∧  𝑖  ∈  𝐷 )  →  ( ( ( 𝑀 ‘ 𝑊 )  ∘  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ) ‘ 𝑖 )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) ) | 
						
							| 53 | 38 52 | sylan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐷 )  →  ( ( ( 𝑀 ‘ 𝑊 )  ∘  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ) ‘ 𝑖 )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) ) ) | 
						
							| 54 | 1 3 18 31 35 2 | cyc2fv2 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 )  =  𝐼 ) | 
						
							| 55 | 54 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐼 ) ) | 
						
							| 56 | 1 2 3 4 5 6 7 8 | cycpmco2lem2 | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝐸 )  =  𝐼 ) | 
						
							| 57 |  | f1cnv | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊 ) | 
						
							| 58 |  | f1of | ⊢ ( ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 59 | 27 57 58 | 3syl | ⊢ ( 𝜑  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 60 | 59 6 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  dom  𝑊 ) | 
						
							| 61 |  | wrddm | ⊢ ( 𝑊  ∈  Word  𝐷  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 62 | 20 61 | syl | ⊢ ( 𝜑  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 63 | 60 62 | eleqtrd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 64 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 65 | 20 64 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 66 | 65 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 67 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 68 |  | ovexd | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  V ) | 
						
							| 69 | 7 68 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  V ) | 
						
							| 70 |  | splval | ⊢ ( ( 𝑊  ∈  dom  𝑀  ∧  ( 𝐸  ∈  V  ∧  𝐸  ∈  V  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) )  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 71 | 4 69 69 43 70 | syl13anc | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 72 | 8 71 | eqtrid | ⊢ ( 𝜑  →  𝑈  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 74 |  | pfxcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 75 | 20 74 | syl | ⊢ ( 𝜑  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 76 |  | ccatcl | ⊢ ( ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 )  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 77 | 75 43 76 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 78 |  | swrdcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 79 | 20 78 | syl | ⊢ ( 𝜑  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 80 |  | ccatlen | ⊢ ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷  ∧  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 )  →  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 81 | 77 79 80 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 82 |  | ccatws1len | ⊢ ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 ) ) | 
						
							| 83 | 20 74 82 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 ) ) | 
						
							| 84 |  | fzofzp1 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 85 | 63 84 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 86 | 7 85 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 87 |  | pfxlen | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  =  𝐸 ) | 
						
							| 88 | 20 86 87 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  =  𝐸 ) | 
						
							| 89 | 88 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 )  =  ( 𝐸  +  1 ) ) | 
						
							| 90 | 83 89 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( 𝐸  +  1 ) ) | 
						
							| 91 |  | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 92 | 65 91 | sylib | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 93 |  | swrdlen | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) | 
						
							| 94 | 20 86 92 93 | syl3anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) | 
						
							| 95 | 90 94 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 96 | 73 81 95 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 97 |  | fz0ssnn0 | ⊢ ( 0 ... ( ♯ ‘ 𝑊 ) )  ⊆  ℕ0 | 
						
							| 98 | 97 86 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℕ0 ) | 
						
							| 99 | 98 | nn0zd | ⊢ ( 𝜑  →  𝐸  ∈  ℤ ) | 
						
							| 100 | 99 | peano2zd | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ∈  ℤ ) | 
						
							| 101 | 100 | zcnd | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ∈  ℂ ) | 
						
							| 102 | 98 | nn0cnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 103 | 101 66 102 | addsubassd | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  −  𝐸 )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 104 | 102 67 66 | addassd | ⊢ ( 𝜑  →  ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  =  ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 105 | 104 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  −  𝐸 )  =  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 ) ) | 
						
							| 106 | 96 103 105 | 3eqtr2d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 ) ) | 
						
							| 107 | 67 66 | addcld | ⊢ ( 𝜑  →  ( 1  +  ( ♯ ‘ 𝑊 ) )  ∈  ℂ ) | 
						
							| 108 | 102 107 | pncan2d | ⊢ ( 𝜑  →  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 )  =  ( 1  +  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 109 | 67 66 | addcomd | ⊢ ( 𝜑  →  ( 1  +  ( ♯ ‘ 𝑊 ) )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 110 | 106 108 109 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 111 | 66 67 110 | mvrraddd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑈 )  −  1 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 112 | 111 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 113 | 63 112 | eleqtrrd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 114 | 1 3 46 47 113 | cycpmfv1 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) )  =  ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) ) ) | 
						
							| 115 | 7 | fveq2i | ⊢ ( 𝑈 ‘ 𝐸 )  =  ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) ) | 
						
							| 116 | 114 115 | eqtr4di | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) )  =  ( 𝑈 ‘ 𝐸 ) ) | 
						
							| 117 | 1 3 20 27 18 32 | cycpmfv3 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐼 )  =  𝐼 ) | 
						
							| 118 | 56 116 117 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐼 ) ) | 
						
							| 119 | 72 | fveq1d | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) | 
						
							| 120 |  | fzossfzop1 | ⊢ ( 𝐸  ∈  ℕ0  →  ( 0 ..^ 𝐸 )  ⊆  ( 0 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 121 | 98 120 | syl | ⊢ ( 𝜑  →  ( 0 ..^ 𝐸 )  ⊆  ( 0 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 122 |  | elfzonn0 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℕ0 ) | 
						
							| 123 |  | fzonn0p1 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℕ0  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) ) ) | 
						
							| 124 | 63 122 123 | 3syl | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) ) ) | 
						
							| 125 | 7 | oveq2i | ⊢ ( 0 ..^ 𝐸 )  =  ( 0 ..^ ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) ) | 
						
							| 126 | 124 125 | eleqtrrdi | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ 𝐸 ) ) | 
						
							| 127 | 121 126 | sseldd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 128 | 90 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ) )  =  ( 0 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 129 | 127 128 | eleqtrrd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ) ) ) | 
						
							| 130 |  | ccatval1 | ⊢ ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷  ∧  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷  ∧  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ) ) )  →  ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) | 
						
							| 131 | 77 79 129 130 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) | 
						
							| 132 | 88 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) )  =  ( 0 ..^ 𝐸 ) ) | 
						
							| 133 | 126 132 | eleqtrrd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) ) ) | 
						
							| 134 |  | ccatval1 | ⊢ ( ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷  ∧  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) ) )  →  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  ( ( 𝑊  prefix  𝐸 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) | 
						
							| 135 | 75 43 133 134 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  ( ( 𝑊  prefix  𝐸 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) | 
						
							| 136 | 119 131 135 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  ( ( 𝑊  prefix  𝐸 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) | 
						
							| 137 |  | pfxfv | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ 𝐸 ) )  →  ( ( 𝑊  prefix  𝐸 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) | 
						
							| 138 | 20 86 126 137 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑊  prefix  𝐸 ) ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) | 
						
							| 139 |  | f1f1orn | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  𝑊 : dom  𝑊 –1-1-onto→ ran  𝑊 ) | 
						
							| 140 | 27 139 | syl | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 –1-1-onto→ ran  𝑊 ) | 
						
							| 141 |  | f1ocnvfv2 | ⊢ ( ( 𝑊 : dom  𝑊 –1-1-onto→ ran  𝑊  ∧  𝐽  ∈  ran  𝑊 )  →  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  𝐽 ) | 
						
							| 142 | 140 6 141 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  𝐽 ) | 
						
							| 143 | 136 138 142 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  𝐽 ) | 
						
							| 144 | 143 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐽 ) ) | 
						
							| 145 | 55 118 144 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐽 ) ) | 
						
							| 146 | 145 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  =  𝐽 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐽 ) ) | 
						
							| 147 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  =  𝐽 )  →  𝑖  =  𝐽 ) | 
						
							| 148 | 147 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  =  𝐽 )  →  ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 )  =  ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 ) ) | 
						
							| 149 | 148 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  =  𝐽 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐽 ) ) ) | 
						
							| 150 | 147 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  =  𝐽 )  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐽 ) ) | 
						
							| 151 | 146 149 150 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  =  𝐽 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) | 
						
							| 152 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  𝐷  ∈  𝑉 ) | 
						
							| 153 | 18 31 | s2cld | ⊢ ( 𝜑  →  〈“ 𝐼 𝐽 ”〉  ∈  Word  𝐷 ) | 
						
							| 154 | 153 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  〈“ 𝐼 𝐽 ”〉  ∈  Word  𝐷 ) | 
						
							| 155 | 18 31 35 | s2f1 | ⊢ ( 𝜑  →  〈“ 𝐼 𝐽 ”〉 : dom  〈“ 𝐼 𝐽 ”〉 –1-1→ 𝐷 ) | 
						
							| 156 | 155 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  〈“ 𝐼 𝐽 ”〉 : dom  〈“ 𝐼 𝐽 ”〉 –1-1→ 𝐷 ) | 
						
							| 157 | 30 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  𝑖  ∈  𝐷 ) | 
						
							| 158 | 157 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  𝑖  ∈  𝐷 ) | 
						
							| 159 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  𝑖  ∈  ran  𝑊 ) | 
						
							| 160 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  ¬  𝐼  ∈  ran  𝑊 ) | 
						
							| 161 |  | nelne2 | ⊢ ( ( 𝑖  ∈  ran  𝑊  ∧  ¬  𝐼  ∈  ran  𝑊 )  →  𝑖  ≠  𝐼 ) | 
						
							| 162 | 159 160 161 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  𝑖  ≠  𝐼 ) | 
						
							| 163 | 162 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  𝑖  ≠  𝐼 ) | 
						
							| 164 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  𝑖  ≠  𝐽 ) | 
						
							| 165 | 163 164 | nelprd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  ¬  𝑖  ∈  { 𝐼 ,  𝐽 } ) | 
						
							| 166 | 18 31 | s2rn | ⊢ ( 𝜑  →  ran  〈“ 𝐼 𝐽 ”〉  =  { 𝐼 ,  𝐽 } ) | 
						
							| 167 | 166 | eleq2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ran  〈“ 𝐼 𝐽 ”〉  ↔  𝑖  ∈  { 𝐼 ,  𝐽 } ) ) | 
						
							| 168 | 167 | notbid | ⊢ ( 𝜑  →  ( ¬  𝑖  ∈  ran  〈“ 𝐼 𝐽 ”〉  ↔  ¬  𝑖  ∈  { 𝐼 ,  𝐽 } ) ) | 
						
							| 169 | 168 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  ( ¬  𝑖  ∈  ran  〈“ 𝐼 𝐽 ”〉  ↔  ¬  𝑖  ∈  { 𝐼 ,  𝐽 } ) ) | 
						
							| 170 | 165 169 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  ¬  𝑖  ∈  ran  〈“ 𝐼 𝐽 ”〉 ) | 
						
							| 171 | 1 152 154 156 158 170 | cycpmfv3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 )  =  𝑖 ) | 
						
							| 172 | 171 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) | 
						
							| 173 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 ) )  →  𝐷  ∈  𝑉 ) | 
						
							| 174 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 ) )  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 175 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 ) )  →  𝐼  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 176 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 ) )  →  𝐽  ∈  ran  𝑊 ) | 
						
							| 177 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 ) )  →  𝑖  ∈  ran  𝑊 ) | 
						
							| 178 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 ) )  →  𝑖  ≠  𝐽 ) | 
						
							| 179 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 ) )  →  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 ) ) | 
						
							| 180 | 1 2 173 174 175 176 7 8 177 178 179 | cycpmco2lem7 | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 ) )  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) | 
						
							| 181 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  →  𝐷  ∈  𝑉 ) | 
						
							| 182 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 183 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  →  𝐼  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 184 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  →  𝐽  ∈  ran  𝑊 ) | 
						
							| 185 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  →  𝑖  ∈  ran  𝑊 ) | 
						
							| 186 | 162 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  →  𝑖  ≠  𝐼 ) | 
						
							| 187 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  →  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 188 | 1 2 181 182 183 184 7 8 185 186 187 | cycpmco2lem6 | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) | 
						
							| 189 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) )  →  𝐷  ∈  𝑉 ) | 
						
							| 190 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) )  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 191 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) )  →  𝐼  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 192 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) )  →  𝐽  ∈  ran  𝑊 ) | 
						
							| 193 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) )  →  𝑖  ∈  ran  𝑊 ) | 
						
							| 194 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) )  →  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) ) | 
						
							| 195 | 1 2 189 190 191 192 7 8 193 194 | cycpmco2lem5 | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) )  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) | 
						
							| 196 |  | f1f1orn | ⊢ ( 𝑈 : dom  𝑈 –1-1→ 𝐷  →  𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈 ) | 
						
							| 197 | 47 196 | syl | ⊢ ( 𝜑  →  𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈 ) | 
						
							| 198 |  | ssun1 | ⊢ ran  𝑊  ⊆  ( ran  𝑊  ∪  { 𝐼 } ) | 
						
							| 199 | 1 2 3 4 5 6 7 8 | cycpmco2rn | ⊢ ( 𝜑  →  ran  𝑈  =  ( ran  𝑊  ∪  { 𝐼 } ) ) | 
						
							| 200 | 198 199 | sseqtrrid | ⊢ ( 𝜑  →  ran  𝑊  ⊆  ran  𝑈 ) | 
						
							| 201 | 200 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  𝑖  ∈  ran  𝑈 ) | 
						
							| 202 |  | f1ocnvdm | ⊢ ( ( 𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈  ∧  𝑖  ∈  ran  𝑈 )  →  ( ◡ 𝑈 ‘ 𝑖 )  ∈  dom  𝑈 ) | 
						
							| 203 | 197 201 202 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  ( ◡ 𝑈 ‘ 𝑖 )  ∈  dom  𝑈 ) | 
						
							| 204 |  | wrddm | ⊢ ( 𝑈  ∈  Word  𝐷  →  dom  𝑈  =  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 205 | 46 204 | syl | ⊢ ( 𝜑  →  dom  𝑈  =  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 206 | 205 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  dom  𝑈  =  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 207 | 203 206 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 208 | 65 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 209 | 208 | peano2zd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  +  1 )  ∈  ℤ ) | 
						
							| 210 | 110 209 | eqeltrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  ∈  ℤ ) | 
						
							| 211 |  | fzoval | ⊢ ( ( ♯ ‘ 𝑈 )  ∈  ℤ  →  ( 0 ..^ ( ♯ ‘ 𝑈 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 212 | 210 211 | syl | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 𝑈 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 213 | 212 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  ( 0 ..^ ( ♯ ‘ 𝑈 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 214 | 207 213 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ... ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 215 |  | elfzr | ⊢ ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ... ( ( ♯ ‘ 𝑈 )  −  1 ) )  →  ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 216 | 214 215 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 217 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  →  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 218 | 99 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  →  𝐸  ∈  ℤ ) | 
						
							| 219 |  | fzospliti | ⊢ ( ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  ∧  𝐸  ∈  ℤ )  →  ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) ) | 
						
							| 220 | 217 218 219 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  →  ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) ) | 
						
							| 221 | 220 | ex | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  →  ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) ) ) | 
						
							| 222 | 221 | orim1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  ( ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) )  →  ( ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) ) | 
						
							| 223 | 216 222 | mpd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  ( ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 224 |  | df-3or | ⊢ ( ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) )  ↔  ( ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 225 | 223 224 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 226 | 225 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  ( ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 0 ..^ 𝐸 )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  ∨  ( ◡ 𝑈 ‘ 𝑖 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 227 | 180 188 195 226 | mpjao3dan | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) | 
						
							| 228 | 172 227 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  ∧  𝑖  ≠  𝐽 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) | 
						
							| 229 | 151 228 | pm2.61dane | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ran  𝑊 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) | 
						
							| 230 | 229 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐷 )  ∧  𝑖  ∈  ran  𝑊 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) | 
						
							| 231 | 1 2 3 4 5 6 7 8 | cycpmco2lem4 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) | 
						
							| 232 | 231 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  =  𝐼 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) | 
						
							| 233 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  =  𝐼 )  →  𝑖  =  𝐼 ) | 
						
							| 234 | 233 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  =  𝐼 )  →  ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 )  =  ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) ) | 
						
							| 235 | 234 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  =  𝐼 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) ) ) | 
						
							| 236 | 233 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  =  𝐼 )  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) | 
						
							| 237 | 232 235 236 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  =  𝐼 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) | 
						
							| 238 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  𝐷  ∈  𝑉 ) | 
						
							| 239 | 20 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 240 | 27 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 241 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 242 | 241 | eldifad | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  𝑖  ∈  𝐷 ) | 
						
							| 243 | 241 | eldifbd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ¬  𝑖  ∈  ran  𝑊 ) | 
						
							| 244 | 1 238 239 240 242 243 | cycpmfv3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 )  =  𝑖 ) | 
						
							| 245 | 153 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  〈“ 𝐼 𝐽 ”〉  ∈  Word  𝐷 ) | 
						
							| 246 | 155 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  〈“ 𝐼 𝐽 ”〉 : dom  〈“ 𝐼 𝐽 ”〉 –1-1→ 𝐷 ) | 
						
							| 247 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  𝑖  ≠  𝐼 ) | 
						
							| 248 |  | eldifn | ⊢ ( 𝑖  ∈  ( 𝐷  ∖  ran  𝑊 )  →  ¬  𝑖  ∈  ran  𝑊 ) | 
						
							| 249 |  | nelne2 | ⊢ ( ( 𝐽  ∈  ran  𝑊  ∧  ¬  𝑖  ∈  ran  𝑊 )  →  𝐽  ≠  𝑖 ) | 
						
							| 250 | 6 248 249 | syl2an | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  →  𝐽  ≠  𝑖 ) | 
						
							| 251 | 250 | necomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  →  𝑖  ≠  𝐽 ) | 
						
							| 252 | 251 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  𝑖  ≠  𝐽 ) | 
						
							| 253 | 247 252 | nelprd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ¬  𝑖  ∈  { 𝐼 ,  𝐽 } ) | 
						
							| 254 | 168 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ( ¬  𝑖  ∈  ran  〈“ 𝐼 𝐽 ”〉  ↔  ¬  𝑖  ∈  { 𝐼 ,  𝐽 } ) ) | 
						
							| 255 | 253 254 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ¬  𝑖  ∈  ran  〈“ 𝐼 𝐽 ”〉 ) | 
						
							| 256 | 1 238 245 246 242 255 | cycpmfv3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 )  =  𝑖 ) | 
						
							| 257 | 256 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝑖 ) ) | 
						
							| 258 | 46 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  𝑈  ∈  Word  𝐷 ) | 
						
							| 259 | 47 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  𝑈 : dom  𝑈 –1-1→ 𝐷 ) | 
						
							| 260 | 199 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ran  𝑈  =  ( ran  𝑊  ∪  { 𝐼 } ) ) | 
						
							| 261 |  | nelsn | ⊢ ( 𝑖  ≠  𝐼  →  ¬  𝑖  ∈  { 𝐼 } ) | 
						
							| 262 | 261 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ¬  𝑖  ∈  { 𝐼 } ) | 
						
							| 263 |  | nelun | ⊢ ( ran  𝑈  =  ( ran  𝑊  ∪  { 𝐼 } )  →  ( ¬  𝑖  ∈  ran  𝑈  ↔  ( ¬  𝑖  ∈  ran  𝑊  ∧  ¬  𝑖  ∈  { 𝐼 } ) ) ) | 
						
							| 264 | 263 | biimpar | ⊢ ( ( ran  𝑈  =  ( ran  𝑊  ∪  { 𝐼 } )  ∧  ( ¬  𝑖  ∈  ran  𝑊  ∧  ¬  𝑖  ∈  { 𝐼 } ) )  →  ¬  𝑖  ∈  ran  𝑈 ) | 
						
							| 265 | 260 243 262 264 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ¬  𝑖  ∈  ran  𝑈 ) | 
						
							| 266 | 1 238 258 259 242 265 | cycpmfv3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 )  =  𝑖 ) | 
						
							| 267 | 244 257 266 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  ∧  𝑖  ≠  𝐼 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) | 
						
							| 268 | 237 267 | pm2.61dane | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) | 
						
							| 269 | 268 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) | 
						
							| 270 |  | undif | ⊢ ( ran  𝑊  ⊆  𝐷  ↔  ( ran  𝑊  ∪  ( 𝐷  ∖  ran  𝑊 ) )  =  𝐷 ) | 
						
							| 271 | 30 270 | sylib | ⊢ ( 𝜑  →  ( ran  𝑊  ∪  ( 𝐷  ∖  ran  𝑊 ) )  =  𝐷 ) | 
						
							| 272 | 271 | eleq2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( ran  𝑊  ∪  ( 𝐷  ∖  ran  𝑊 ) )  ↔  𝑖  ∈  𝐷 ) ) | 
						
							| 273 |  | elun | ⊢ ( 𝑖  ∈  ( ran  𝑊  ∪  ( 𝐷  ∖  ran  𝑊 ) )  ↔  ( 𝑖  ∈  ran  𝑊  ∨  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) ) ) | 
						
							| 274 | 272 273 | bitr3di | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝐷  ↔  ( 𝑖  ∈  ran  𝑊  ∨  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) ) ) ) | 
						
							| 275 | 274 | biimpa | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐷 )  →  ( 𝑖  ∈  ran  𝑊  ∨  𝑖  ∈  ( 𝐷  ∖  ran  𝑊 ) ) ) | 
						
							| 276 | 230 269 275 | mpjaodan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐷 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝑖 ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) | 
						
							| 277 | 53 276 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐷 )  →  ( ( ( 𝑀 ‘ 𝑊 )  ∘  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ) ‘ 𝑖 )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝑖 ) ) | 
						
							| 278 | 42 51 277 | eqfnfvd | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 )  ∘  ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) )  =  ( 𝑀 ‘ 𝑈 ) ) |