| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tocycval.1 |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
| 2 |
|
tocycfv.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 3 |
|
tocycfv.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
| 4 |
|
tocycfv.1 |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
| 5 |
|
cycpmfv3.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 6 |
|
cycpmfv3.2 |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ran 𝑊 ) |
| 7 |
1 2 3 4
|
tocycfv |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑊 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
| 8 |
7
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑊 ) ‘ 𝑋 ) = ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ‘ 𝑋 ) ) |
| 9 |
|
f1oi |
⊢ ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) : ( 𝐷 ∖ ran 𝑊 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑊 ) |
| 10 |
|
f1ofn |
⊢ ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) : ( 𝐷 ∖ ran 𝑊 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑊 ) → ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) Fn ( 𝐷 ∖ ran 𝑊 ) ) |
| 11 |
9 10
|
mp1i |
⊢ ( 𝜑 → ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) Fn ( 𝐷 ∖ ran 𝑊 ) ) |
| 12 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 13 |
|
cshwf |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ) → ( 𝑊 cyclShift 1 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 ) |
| 14 |
3 12 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 cyclShift 1 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 ) |
| 15 |
14
|
ffnd |
⊢ ( 𝜑 → ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 16 |
|
df-f1 |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ↔ ( 𝑊 : dom 𝑊 ⟶ 𝐷 ∧ Fun ◡ 𝑊 ) ) |
| 17 |
4 16
|
sylib |
⊢ ( 𝜑 → ( 𝑊 : dom 𝑊 ⟶ 𝐷 ∧ Fun ◡ 𝑊 ) ) |
| 18 |
17
|
simprd |
⊢ ( 𝜑 → Fun ◡ 𝑊 ) |
| 19 |
18
|
funfnd |
⊢ ( 𝜑 → ◡ 𝑊 Fn dom ◡ 𝑊 ) |
| 20 |
|
df-rn |
⊢ ran 𝑊 = dom ◡ 𝑊 |
| 21 |
20
|
fneq2i |
⊢ ( ◡ 𝑊 Fn ran 𝑊 ↔ ◡ 𝑊 Fn dom ◡ 𝑊 ) |
| 22 |
19 21
|
sylibr |
⊢ ( 𝜑 → ◡ 𝑊 Fn ran 𝑊 ) |
| 23 |
|
dfdm4 |
⊢ dom 𝑊 = ran ◡ 𝑊 |
| 24 |
23
|
eqimss2i |
⊢ ran ◡ 𝑊 ⊆ dom 𝑊 |
| 25 |
|
wrdfn |
⊢ ( 𝑊 ∈ Word 𝐷 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 27 |
26
|
fndmd |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 28 |
24 27
|
sseqtrid |
⊢ ( 𝜑 → ran ◡ 𝑊 ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 29 |
|
fnco |
⊢ ( ( ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ◡ 𝑊 Fn ran 𝑊 ∧ ran ◡ 𝑊 ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) Fn ran 𝑊 ) |
| 30 |
15 22 28 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) Fn ran 𝑊 ) |
| 31 |
|
disjdifr |
⊢ ( ( 𝐷 ∖ ran 𝑊 ) ∩ ran 𝑊 ) = ∅ |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → ( ( 𝐷 ∖ ran 𝑊 ) ∩ ran 𝑊 ) = ∅ ) |
| 33 |
5 6
|
eldifd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
| 34 |
|
fvun1 |
⊢ ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) Fn ( 𝐷 ∖ ran 𝑊 ) ∧ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) Fn ran 𝑊 ∧ ( ( ( 𝐷 ∖ ran 𝑊 ) ∩ ran 𝑊 ) = ∅ ∧ 𝑋 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ) → ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ‘ 𝑋 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ‘ 𝑋 ) ) |
| 35 |
11 30 32 33 34
|
syl112anc |
⊢ ( 𝜑 → ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ‘ 𝑋 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ‘ 𝑋 ) ) |
| 36 |
|
fvresi |
⊢ ( 𝑋 ∈ ( 𝐷 ∖ ran 𝑊 ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ‘ 𝑋 ) = 𝑋 ) |
| 37 |
33 36
|
syl |
⊢ ( 𝜑 → ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ‘ 𝑋 ) = 𝑋 ) |
| 38 |
8 35 37
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑊 ) ‘ 𝑋 ) = 𝑋 ) |