Step |
Hyp |
Ref |
Expression |
1 |
|
tocycval.1 |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
2 |
|
tocycfv.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
3 |
|
tocycfv.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
4 |
|
tocycfv.1 |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
5 |
|
cycpmfv3.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
6 |
|
cycpmfv3.2 |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ran 𝑊 ) |
7 |
1 2 3 4
|
tocycfv |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑊 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑊 ) ‘ 𝑋 ) = ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ‘ 𝑋 ) ) |
9 |
|
f1oi |
⊢ ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) : ( 𝐷 ∖ ran 𝑊 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑊 ) |
10 |
|
f1ofn |
⊢ ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) : ( 𝐷 ∖ ran 𝑊 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑊 ) → ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) Fn ( 𝐷 ∖ ran 𝑊 ) ) |
11 |
9 10
|
mp1i |
⊢ ( 𝜑 → ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) Fn ( 𝐷 ∖ ran 𝑊 ) ) |
12 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
13 |
|
cshwf |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ) → ( 𝑊 cyclShift 1 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 ) |
14 |
3 12 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 cyclShift 1 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 ) |
15 |
14
|
ffnd |
⊢ ( 𝜑 → ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
16 |
|
df-f1 |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ↔ ( 𝑊 : dom 𝑊 ⟶ 𝐷 ∧ Fun ◡ 𝑊 ) ) |
17 |
4 16
|
sylib |
⊢ ( 𝜑 → ( 𝑊 : dom 𝑊 ⟶ 𝐷 ∧ Fun ◡ 𝑊 ) ) |
18 |
17
|
simprd |
⊢ ( 𝜑 → Fun ◡ 𝑊 ) |
19 |
18
|
funfnd |
⊢ ( 𝜑 → ◡ 𝑊 Fn dom ◡ 𝑊 ) |
20 |
|
df-rn |
⊢ ran 𝑊 = dom ◡ 𝑊 |
21 |
20
|
fneq2i |
⊢ ( ◡ 𝑊 Fn ran 𝑊 ↔ ◡ 𝑊 Fn dom ◡ 𝑊 ) |
22 |
19 21
|
sylibr |
⊢ ( 𝜑 → ◡ 𝑊 Fn ran 𝑊 ) |
23 |
|
dfdm4 |
⊢ dom 𝑊 = ran ◡ 𝑊 |
24 |
23
|
eqimss2i |
⊢ ran ◡ 𝑊 ⊆ dom 𝑊 |
25 |
|
wrdfn |
⊢ ( 𝑊 ∈ Word 𝐷 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
27 |
26
|
fndmd |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
28 |
24 27
|
sseqtrid |
⊢ ( 𝜑 → ran ◡ 𝑊 ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
29 |
|
fnco |
⊢ ( ( ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ◡ 𝑊 Fn ran 𝑊 ∧ ran ◡ 𝑊 ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) Fn ran 𝑊 ) |
30 |
15 22 28 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) Fn ran 𝑊 ) |
31 |
|
disjdifr |
⊢ ( ( 𝐷 ∖ ran 𝑊 ) ∩ ran 𝑊 ) = ∅ |
32 |
31
|
a1i |
⊢ ( 𝜑 → ( ( 𝐷 ∖ ran 𝑊 ) ∩ ran 𝑊 ) = ∅ ) |
33 |
5 6
|
eldifd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
34 |
|
fvun1 |
⊢ ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) Fn ( 𝐷 ∖ ran 𝑊 ) ∧ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) Fn ran 𝑊 ∧ ( ( ( 𝐷 ∖ ran 𝑊 ) ∩ ran 𝑊 ) = ∅ ∧ 𝑋 ∈ ( 𝐷 ∖ ran 𝑊 ) ) ) → ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ‘ 𝑋 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ‘ 𝑋 ) ) |
35 |
11 30 32 33 34
|
syl112anc |
⊢ ( 𝜑 → ( ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ∪ ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) ‘ 𝑋 ) = ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ‘ 𝑋 ) ) |
36 |
|
fvresi |
⊢ ( 𝑋 ∈ ( 𝐷 ∖ ran 𝑊 ) → ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ‘ 𝑋 ) = 𝑋 ) |
37 |
33 36
|
syl |
⊢ ( 𝜑 → ( ( I ↾ ( 𝐷 ∖ ran 𝑊 ) ) ‘ 𝑋 ) = 𝑋 ) |
38 |
8 35 37
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑊 ) ‘ 𝑋 ) = 𝑋 ) |