| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 2 |  | cycpmco2.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpmco2.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | cycpmco2.w | ⊢ ( 𝜑  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 5 |  | cycpmco2.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 6 |  | cycpmco2.j | ⊢ ( 𝜑  →  𝐽  ∈  ran  𝑊 ) | 
						
							| 7 |  | cycpmco2.e | ⊢ 𝐸  =  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) | 
						
							| 8 |  | cycpmco2.1 | ⊢ 𝑈  =  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) | 
						
							| 9 |  | cycpmco2lem.1 | ⊢ ( 𝜑  →  𝐾  ∈  ran  𝑊 ) | 
						
							| 10 |  | cycpmco2lem5.1 | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) ) | 
						
							| 11 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  𝐾  ∈  ran  𝑊 ) | 
						
							| 12 |  | ovexd | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  V ) | 
						
							| 13 | 7 12 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  V ) | 
						
							| 14 | 5 | eldifad | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 15 | 14 | s1cld | ⊢ ( 𝜑  →  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) | 
						
							| 16 |  | splval | ⊢ ( ( 𝑊  ∈  dom  𝑀  ∧  ( 𝐸  ∈  V  ∧  𝐸  ∈  V  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) )  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 17 | 4 13 13 15 16 | syl13anc | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 18 | 8 17 | eqtrid | ⊢ ( 𝜑  →  𝑈  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 20 |  | ssrab2 | ⊢ { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ⊆  Word  𝐷 | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 22 | 1 2 21 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 23 | 3 22 | syl | ⊢ ( 𝜑  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 24 | 23 | fdmd | ⊢ ( 𝜑  →  dom  𝑀  =  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 25 | 4 24 | eleqtrd | ⊢ ( 𝜑  →  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 26 | 20 25 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 27 |  | pfxcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝜑  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 29 |  | ccatcl | ⊢ ( ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 )  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 30 | 28 15 29 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 31 |  | swrdcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 32 | 26 31 | syl | ⊢ ( 𝜑  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 33 |  | ccatlen | ⊢ ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷  ∧  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 )  →  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 34 | 30 32 33 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 35 |  | ccatws1len | ⊢ ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 ) ) | 
						
							| 36 | 28 35 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 ) ) | 
						
							| 37 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 38 |  | dmeq | ⊢ ( 𝑤  =  𝑊  →  dom  𝑤  =  dom  𝑊 ) | 
						
							| 39 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝐷  =  𝐷 ) | 
						
							| 40 | 37 38 39 | f1eq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 41 | 40 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 42 | 25 41 | sylib | ⊢ ( 𝜑  →  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 43 | 42 | simprd | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 44 |  | f1cnv | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊 ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝜑  →  ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊 ) | 
						
							| 46 |  | f1of | ⊢ ( ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝜑  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 48 | 47 6 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  dom  𝑊 ) | 
						
							| 49 |  | wrddm | ⊢ ( 𝑊  ∈  Word  𝐷  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 50 | 26 49 | syl | ⊢ ( 𝜑  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 51 | 48 50 | eleqtrd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 52 |  | fzofzp1 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 54 | 7 53 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 55 |  | pfxlen | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  =  𝐸 ) | 
						
							| 56 | 26 54 55 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  =  𝐸 ) | 
						
							| 57 | 56 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 )  =  ( 𝐸  +  1 ) ) | 
						
							| 58 | 36 57 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( 𝐸  +  1 ) ) | 
						
							| 59 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 60 | 26 59 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 61 |  | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 62 | 60 61 | sylib | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 63 |  | swrdlen | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) | 
						
							| 64 | 26 54 62 63 | syl3anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) | 
						
							| 65 | 58 64 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 66 | 19 34 65 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 67 |  | fz0ssnn0 | ⊢ ( 0 ... ( ♯ ‘ 𝑊 ) )  ⊆  ℕ0 | 
						
							| 68 | 67 54 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℕ0 ) | 
						
							| 69 | 68 | nn0zd | ⊢ ( 𝜑  →  𝐸  ∈  ℤ ) | 
						
							| 70 | 69 | peano2zd | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ∈  ℤ ) | 
						
							| 71 | 70 | zcnd | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ∈  ℂ ) | 
						
							| 72 | 60 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 73 | 68 | nn0cnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 74 | 71 72 73 | addsubassd | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  −  𝐸 )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 75 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 76 | 73 75 72 | addassd | ⊢ ( 𝜑  →  ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  =  ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 77 | 76 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  −  𝐸 )  =  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 ) ) | 
						
							| 78 | 66 74 77 | 3eqtr2d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 ) ) | 
						
							| 79 | 75 72 | addcld | ⊢ ( 𝜑  →  ( 1  +  ( ♯ ‘ 𝑊 ) )  ∈  ℂ ) | 
						
							| 80 | 73 79 | pncan2d | ⊢ ( 𝜑  →  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 )  =  ( 1  +  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 81 | 75 72 | addcomd | ⊢ ( 𝜑  →  ( 1  +  ( ♯ ‘ 𝑊 ) )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 82 | 78 80 81 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 83 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 )  =  𝐸  →  ( ( ♯ ‘ 𝑊 )  +  1 )  =  ( 𝐸  +  1 ) ) | 
						
							| 84 | 82 83 | sylan9eq | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  ( ♯ ‘ 𝑈 )  =  ( 𝐸  +  1 ) ) | 
						
							| 85 | 84 | oveq1d | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  ( ( ♯ ‘ 𝑈 )  −  1 )  =  ( ( 𝐸  +  1 )  −  1 ) ) | 
						
							| 86 | 73 75 | pncand | ⊢ ( 𝜑  →  ( ( 𝐸  +  1 )  −  1 )  =  𝐸 ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  ( ( 𝐸  +  1 )  −  1 )  =  𝐸 ) | 
						
							| 88 | 85 87 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  ( ( ♯ ‘ 𝑈 )  −  1 )  =  𝐸 ) | 
						
							| 89 | 88 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) )  =  ( 𝑈 ‘ 𝐸 ) ) | 
						
							| 90 | 10 | fveq2d | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 91 | 1 2 3 4 5 6 7 8 | cycpmco2f1 | ⊢ ( 𝜑  →  𝑈 : dom  𝑈 –1-1→ 𝐷 ) | 
						
							| 92 |  | f1f1orn | ⊢ ( 𝑈 : dom  𝑈 –1-1→ 𝐷  →  𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈 ) | 
						
							| 93 | 91 92 | syl | ⊢ ( 𝜑  →  𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈 ) | 
						
							| 94 |  | ssun1 | ⊢ ran  𝑊  ⊆  ( ran  𝑊  ∪  { 𝐼 } ) | 
						
							| 95 | 1 2 3 4 5 6 7 8 | cycpmco2rn | ⊢ ( 𝜑  →  ran  𝑈  =  ( ran  𝑊  ∪  { 𝐼 } ) ) | 
						
							| 96 | 94 95 | sseqtrrid | ⊢ ( 𝜑  →  ran  𝑊  ⊆  ran  𝑈 ) | 
						
							| 97 | 96 | sselda | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ran  𝑊 )  →  𝐾  ∈  ran  𝑈 ) | 
						
							| 98 |  | f1ocnvfv2 | ⊢ ( ( 𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈  ∧  𝐾  ∈  ran  𝑈 )  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 99 | 93 97 98 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ran  𝑊 )  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 100 | 9 99 | mpdan | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 101 | 90 100 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) )  =  𝐾 ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) )  =  𝐾 ) | 
						
							| 103 | 1 2 3 4 5 6 7 8 | cycpmco2lem2 | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝐸 )  =  𝐼 ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  ( 𝑈 ‘ 𝐸 )  =  𝐼 ) | 
						
							| 105 | 89 102 104 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  𝐾  =  𝐼 ) | 
						
							| 106 | 5 | eldifbd | ⊢ ( 𝜑  →  ¬  𝐼  ∈  ran  𝑊 ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  ¬  𝐼  ∈  ran  𝑊 ) | 
						
							| 108 | 105 107 | eqneltrd | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  ¬  𝐾  ∈  ran  𝑊 ) | 
						
							| 109 | 11 108 | pm2.21dd | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  =  𝐸 )  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) ) | 
						
							| 110 |  | splcl | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 )  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  ∈  Word  𝐷 ) | 
						
							| 111 | 26 15 110 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  ∈  Word  𝐷 ) | 
						
							| 112 | 8 111 | eqeltrid | ⊢ ( 𝜑  →  𝑈  ∈  Word  𝐷 ) | 
						
							| 113 |  | nn0p1gt0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  0  <  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 114 | 60 113 | syl | ⊢ ( 𝜑  →  0  <  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 115 | 114 82 | breqtrrd | ⊢ ( 𝜑  →  0  <  ( ♯ ‘ 𝑈 ) ) | 
						
							| 116 |  | eqidd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑈 )  −  1 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) ) | 
						
							| 117 | 1 3 112 91 115 116 | cycpmfv2 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  =  ( 𝑈 ‘ 0 ) ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  =  ( 𝑈 ‘ 0 ) ) | 
						
							| 119 |  | f1f | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  𝑊 : dom  𝑊 ⟶ 𝐷 ) | 
						
							| 120 | 43 119 | syl | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 ⟶ 𝐷 ) | 
						
							| 121 | 120 | frnd | ⊢ ( 𝜑  →  ran  𝑊  ⊆  𝐷 ) | 
						
							| 122 | 3 121 | ssexd | ⊢ ( 𝜑  →  ran  𝑊  ∈  V ) | 
						
							| 123 | 6 | ne0d | ⊢ ( 𝜑  →  ran  𝑊  ≠  ∅ ) | 
						
							| 124 |  | hashgt0 | ⊢ ( ( ran  𝑊  ∈  V  ∧  ran  𝑊  ≠  ∅ )  →  0  <  ( ♯ ‘ ran  𝑊 ) ) | 
						
							| 125 | 122 123 124 | syl2anc | ⊢ ( 𝜑  →  0  <  ( ♯ ‘ ran  𝑊 ) ) | 
						
							| 126 | 4 | dmexd | ⊢ ( 𝜑  →  dom  𝑊  ∈  V ) | 
						
							| 127 |  | hashf1rn | ⊢ ( ( dom  𝑊  ∈  V  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ ran  𝑊 ) ) | 
						
							| 128 | 126 43 127 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ ran  𝑊 ) ) | 
						
							| 129 | 125 128 | breqtrrd | ⊢ ( 𝜑  →  0  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 130 |  | eqidd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 131 | 1 3 26 43 129 130 | cycpmfv2 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 133 | 8 | a1i | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  𝑈  =  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ) | 
						
							| 134 | 1 2 3 4 5 6 7 8 | cycpmco2lem3 | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑈 )  −  1 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 135 | 73 75 | addcomd | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  =  ( 1  +  𝐸 ) ) | 
						
							| 136 | 135 | oveq2d | ⊢ ( 𝜑  →  ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  ( 𝐸  +  1 ) )  =  ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  ( 1  +  𝐸 ) ) ) | 
						
							| 137 | 72 75 | subcld | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℂ ) | 
						
							| 138 | 137 73 75 | nppcan3d | ⊢ ( 𝜑  →  ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  ( 1  +  𝐸 ) )  =  ( ( ( ♯ ‘ 𝑊 )  −  1 )  +  1 ) ) | 
						
							| 139 | 72 75 | npcand | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  +  1 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 140 | 136 138 139 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  ( 𝐸  +  1 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 141 | 134 140 | eqtr4d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑈 )  −  1 )  =  ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  ( 𝐸  +  1 ) ) ) | 
						
							| 142 | 141 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ( ♯ ‘ 𝑈 )  −  1 )  =  ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  ( 𝐸  +  1 ) ) ) | 
						
							| 143 | 133 142 | fveq12d | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) )  =  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  ( 𝐸  +  1 ) ) ) ) | 
						
							| 144 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 145 |  | nn0fz0 | ⊢ ( 𝐸  ∈  ℕ0  ↔  𝐸  ∈  ( 0 ... 𝐸 ) ) | 
						
							| 146 | 68 145 | sylib | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ... 𝐸 ) ) | 
						
							| 147 | 146 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  𝐸  ∈  ( 0 ... 𝐸 ) ) | 
						
							| 148 | 54 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 149 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) | 
						
							| 150 | 72 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 151 |  | 1cnd | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  1  ∈  ℂ ) | 
						
							| 152 | 73 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  𝐸  ∈  ℂ ) | 
						
							| 153 | 150 151 152 | sub32d | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  =  ( ( ( ♯ ‘ 𝑊 )  −  𝐸 )  −  1 ) ) | 
						
							| 154 |  | fznn0sub | ⊢ ( 𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( ( ♯ ‘ 𝑊 )  −  𝐸 )  ∈  ℕ0 ) | 
						
							| 155 | 54 154 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  −  𝐸 )  ∈  ℕ0 ) | 
						
							| 156 | 155 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ( ♯ ‘ 𝑊 )  −  𝐸 )  ∈  ℕ0 ) | 
						
							| 157 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ♯ ‘ 𝑊 )  ≠  𝐸 ) | 
						
							| 158 | 150 152 156 157 | subne0nn | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ( ♯ ‘ 𝑊 )  −  𝐸 )  ∈  ℕ ) | 
						
							| 159 |  | fzo0end | ⊢ ( ( ( ♯ ‘ 𝑊 )  −  𝐸 )  ∈  ℕ  →  ( ( ( ♯ ‘ 𝑊 )  −  𝐸 )  −  1 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 160 | 158 159 | syl | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ( ( ♯ ‘ 𝑊 )  −  𝐸 )  −  1 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 161 | 153 160 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 162 |  | s1len | ⊢ ( ♯ ‘ 〈“ 𝐼 ”〉 )  =  1 | 
						
							| 163 | 162 | eqcomi | ⊢ 1  =  ( ♯ ‘ 〈“ 𝐼 ”〉 ) | 
						
							| 164 | 163 | oveq2i | ⊢ ( 𝐸  +  1 )  =  ( 𝐸  +  ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) | 
						
							| 165 | 164 | a1i | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( 𝐸  +  1 )  =  ( 𝐸  +  ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) ) | 
						
							| 166 | 144 147 148 149 161 165 | splfv3 | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  ( 𝐸  +  1 ) ) )  =  ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  𝐸 ) ) ) | 
						
							| 167 | 137 73 | npcand | ⊢ ( 𝜑  →  ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  𝐸 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 168 | 167 | fveq2d | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  𝐸 ) )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 169 | 168 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝐸 )  +  𝐸 ) )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 170 | 143 166 169 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 171 | 170 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) ) | 
						
							| 172 | 18 | fveq1d | ⊢ ( 𝜑  →  ( 𝑈 ‘ 0 )  =  ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 0 ) ) | 
						
							| 173 |  | nn0p1nn | ⊢ ( 𝐸  ∈  ℕ0  →  ( 𝐸  +  1 )  ∈  ℕ ) | 
						
							| 174 | 68 173 | syl | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ∈  ℕ ) | 
						
							| 175 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ ( 𝐸  +  1 ) )  ↔  ( 𝐸  +  1 )  ∈  ℕ ) | 
						
							| 176 | 174 175 | sylibr | ⊢ ( 𝜑  →  0  ∈  ( 0 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 177 | 58 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ) )  =  ( 0 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 178 | 176 177 | eleqtrrd | ⊢ ( 𝜑  →  0  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ) ) ) | 
						
							| 179 |  | ccatval1 | ⊢ ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷  ∧  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ) ) )  →  ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 0 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ 0 ) ) | 
						
							| 180 | 30 32 178 179 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 0 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ 0 ) ) | 
						
							| 181 |  | elfzonn0 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℕ0 ) | 
						
							| 182 | 51 181 | syl | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℕ0 ) | 
						
							| 183 |  | nn0p1nn | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℕ0  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ℕ ) | 
						
							| 184 | 182 183 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ℕ ) | 
						
							| 185 | 7 184 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ℕ ) | 
						
							| 186 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 𝐸 )  ↔  𝐸  ∈  ℕ ) | 
						
							| 187 | 185 186 | sylibr | ⊢ ( 𝜑  →  0  ∈  ( 0 ..^ 𝐸 ) ) | 
						
							| 188 | 56 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) )  =  ( 0 ..^ 𝐸 ) ) | 
						
							| 189 | 187 188 | eleqtrrd | ⊢ ( 𝜑  →  0  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) ) ) | 
						
							| 190 |  | ccatval1 | ⊢ ( ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) ) )  →  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ 0 )  =  ( ( 𝑊  prefix  𝐸 ) ‘ 0 ) ) | 
						
							| 191 | 28 15 189 190 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ 0 )  =  ( ( 𝑊  prefix  𝐸 ) ‘ 0 ) ) | 
						
							| 192 |  | nn0p1gt0 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℕ0  →  0  <  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) ) | 
						
							| 193 | 182 192 | syl | ⊢ ( 𝜑  →  0  <  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) ) | 
						
							| 194 | 193 7 | breqtrrdi | ⊢ ( 𝜑  →  0  <  𝐸 ) | 
						
							| 195 | 194 | gt0ne0d | ⊢ ( 𝜑  →  𝐸  ≠  0 ) | 
						
							| 196 |  | fzne1 | ⊢ ( ( 𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐸  ≠  0 )  →  𝐸  ∈  ( ( 0  +  1 ) ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 197 | 54 195 196 | syl2anc | ⊢ ( 𝜑  →  𝐸  ∈  ( ( 0  +  1 ) ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 198 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 199 | 198 | oveq1i | ⊢ ( ( 0  +  1 ) ... ( ♯ ‘ 𝑊 ) )  =  ( 1 ... ( ♯ ‘ 𝑊 ) ) | 
						
							| 200 | 197 199 | eleqtrdi | ⊢ ( 𝜑  →  𝐸  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 201 |  | pfxfv0 | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  prefix  𝐸 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 202 | 26 200 201 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑊  prefix  𝐸 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 203 | 180 191 202 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 204 | 172 203 | eqtrd | ⊢ ( 𝜑  →  ( 𝑈 ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 205 | 204 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( 𝑈 ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 206 | 132 171 205 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( 𝑈 ‘ 0 )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) ) | 
						
							| 207 | 118 206 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑊 )  ≠  𝐸 )  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) ) | 
						
							| 208 | 109 207 | pm2.61dane | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) ) | 
						
							| 209 | 101 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 ) ) | 
						
							| 210 | 101 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑈 ‘ ( ( ♯ ‘ 𝑈 )  −  1 ) ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) ) | 
						
							| 211 | 208 209 210 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) ) |