Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmco2.c |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
2 |
|
cycpmco2.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
3 |
|
cycpmco2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
4 |
|
cycpmco2.w |
⊢ ( 𝜑 → 𝑊 ∈ dom 𝑀 ) |
5 |
|
cycpmco2.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
6 |
|
cycpmco2.j |
⊢ ( 𝜑 → 𝐽 ∈ ran 𝑊 ) |
7 |
|
cycpmco2.e |
⊢ 𝐸 = ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) |
8 |
|
cycpmco2.1 |
⊢ 𝑈 = ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) |
9 |
|
ssrab2 |
⊢ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⊆ Word 𝐷 |
10 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
11 |
1 2 10
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
13 |
12
|
fdmd |
⊢ ( 𝜑 → dom 𝑀 = { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
14 |
4 13
|
eleqtrd |
⊢ ( 𝜑 → 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
15 |
9 14
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
16 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
18 |
17
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
19 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
20 |
|
ovexd |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ V ) |
21 |
7 20
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
22 |
5
|
eldifad |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
23 |
22
|
s1cld |
⊢ ( 𝜑 → 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) |
24 |
|
splval |
⊢ ( ( 𝑊 ∈ dom 𝑀 ∧ ( 𝐸 ∈ V ∧ 𝐸 ∈ V ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) ) → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
25 |
4 21 21 23 24
|
syl13anc |
⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
26 |
8 25
|
syl5eq |
⊢ ( 𝜑 → 𝑈 = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
28 |
|
pfxcl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ) |
29 |
15 28
|
syl |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ) |
30 |
|
ccatcl |
⊢ ( ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ) |
31 |
29 23 30
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ) |
32 |
|
swrdcl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) |
33 |
15 32
|
syl |
⊢ ( 𝜑 → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) |
34 |
|
ccatlen |
⊢ ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ∧ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) → ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
35 |
31 33 34
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
36 |
|
ccatws1len |
⊢ ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) ) |
37 |
29 36
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) ) |
38 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
39 |
|
dmeq |
⊢ ( 𝑤 = 𝑊 → dom 𝑤 = dom 𝑊 ) |
40 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝐷 = 𝐷 ) |
41 |
38 39 40
|
f1eq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
42 |
41
|
elrab |
⊢ ( 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
43 |
14 42
|
sylib |
⊢ ( 𝜑 → ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
44 |
|
f1cnv |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
45 |
43 44
|
simpl2im |
⊢ ( 𝜑 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
46 |
|
f1of |
⊢ ( ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
48 |
47 6
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ dom 𝑊 ) |
49 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐷 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
50 |
15 49
|
syl |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
51 |
48 50
|
eleqtrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
52 |
|
fzofzp1 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
53 |
51 52
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
54 |
7 53
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
55 |
|
pfxlen |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) = 𝐸 ) |
56 |
15 54 55
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) = 𝐸 ) |
57 |
56
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) = ( 𝐸 + 1 ) ) |
58 |
37 57
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( 𝐸 + 1 ) ) |
59 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
60 |
17 59
|
sylib |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
61 |
|
swrdlen |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) |
62 |
15 54 60 61
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) |
63 |
58 62
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
64 |
27 35 63
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
65 |
|
fz0ssnn0 |
⊢ ( 0 ... ( ♯ ‘ 𝑊 ) ) ⊆ ℕ0 |
66 |
65 54
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
67 |
66
|
nn0zd |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
68 |
67
|
peano2zd |
⊢ ( 𝜑 → ( 𝐸 + 1 ) ∈ ℤ ) |
69 |
68
|
zcnd |
⊢ ( 𝜑 → ( 𝐸 + 1 ) ∈ ℂ ) |
70 |
66
|
nn0cnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
71 |
69 18 70
|
addsubassd |
⊢ ( 𝜑 → ( ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) − 𝐸 ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
72 |
70 19 18
|
addassd |
⊢ ( 𝜑 → ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) = ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) ) |
73 |
72
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) − 𝐸 ) = ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) ) |
74 |
64 71 73
|
3eqtr2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) ) |
75 |
19 18
|
addcld |
⊢ ( 𝜑 → ( 1 + ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) |
76 |
70 75
|
pncan2d |
⊢ ( 𝜑 → ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) = ( 1 + ( ♯ ‘ 𝑊 ) ) ) |
77 |
19 18
|
addcomd |
⊢ ( 𝜑 → ( 1 + ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
78 |
74 76 77
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
79 |
18 19 78
|
mvrraddd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) − 1 ) = ( ♯ ‘ 𝑊 ) ) |