| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 2 |  | cycpmco2.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpmco2.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | cycpmco2.w | ⊢ ( 𝜑  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 5 |  | cycpmco2.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 6 |  | cycpmco2.j | ⊢ ( 𝜑  →  𝐽  ∈  ran  𝑊 ) | 
						
							| 7 |  | cycpmco2.e | ⊢ 𝐸  =  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) | 
						
							| 8 |  | cycpmco2.1 | ⊢ 𝑈  =  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) | 
						
							| 9 |  | ssrab2 | ⊢ { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ⊆  Word  𝐷 | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 11 | 1 2 10 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 12 | 3 11 | syl | ⊢ ( 𝜑  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 13 | 12 | fdmd | ⊢ ( 𝜑  →  dom  𝑀  =  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 14 | 4 13 | eleqtrd | ⊢ ( 𝜑  →  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 15 | 9 14 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 16 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 18 | 17 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 19 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 20 |  | ovexd | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  V ) | 
						
							| 21 | 7 20 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  V ) | 
						
							| 22 | 5 | eldifad | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 23 | 22 | s1cld | ⊢ ( 𝜑  →  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) | 
						
							| 24 |  | splval | ⊢ ( ( 𝑊  ∈  dom  𝑀  ∧  ( 𝐸  ∈  V  ∧  𝐸  ∈  V  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) )  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 25 | 4 21 21 23 24 | syl13anc | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 26 | 8 25 | eqtrid | ⊢ ( 𝜑  →  𝑈  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 28 |  | pfxcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 29 | 15 28 | syl | ⊢ ( 𝜑  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 30 |  | ccatcl | ⊢ ( ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 )  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 31 | 29 23 30 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 32 |  | swrdcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 33 | 15 32 | syl | ⊢ ( 𝜑  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 34 |  | ccatlen | ⊢ ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷  ∧  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 )  →  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 35 | 31 33 34 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 36 |  | ccatws1len | ⊢ ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 ) ) | 
						
							| 37 | 29 36 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 ) ) | 
						
							| 38 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 39 |  | dmeq | ⊢ ( 𝑤  =  𝑊  →  dom  𝑤  =  dom  𝑊 ) | 
						
							| 40 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝐷  =  𝐷 ) | 
						
							| 41 | 38 39 40 | f1eq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 42 | 41 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 43 | 14 42 | sylib | ⊢ ( 𝜑  →  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 44 |  | f1cnv | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊 ) | 
						
							| 45 | 43 44 | simpl2im | ⊢ ( 𝜑  →  ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊 ) | 
						
							| 46 |  | f1of | ⊢ ( ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝜑  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 48 | 47 6 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  dom  𝑊 ) | 
						
							| 49 |  | wrddm | ⊢ ( 𝑊  ∈  Word  𝐷  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 50 | 15 49 | syl | ⊢ ( 𝜑  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 51 | 48 50 | eleqtrd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 52 |  | fzofzp1 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 54 | 7 53 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 55 |  | pfxlen | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  =  𝐸 ) | 
						
							| 56 | 15 54 55 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  =  𝐸 ) | 
						
							| 57 | 56 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 )  =  ( 𝐸  +  1 ) ) | 
						
							| 58 | 37 57 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( 𝐸  +  1 ) ) | 
						
							| 59 |  | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 60 | 17 59 | sylib | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 61 |  | swrdlen | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) | 
						
							| 62 | 15 54 60 61 | syl3anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) | 
						
							| 63 | 58 62 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 64 | 27 35 63 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 65 |  | fz0ssnn0 | ⊢ ( 0 ... ( ♯ ‘ 𝑊 ) )  ⊆  ℕ0 | 
						
							| 66 | 65 54 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℕ0 ) | 
						
							| 67 | 66 | nn0zd | ⊢ ( 𝜑  →  𝐸  ∈  ℤ ) | 
						
							| 68 | 67 | peano2zd | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ∈  ℤ ) | 
						
							| 69 | 68 | zcnd | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ∈  ℂ ) | 
						
							| 70 | 66 | nn0cnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 71 | 69 18 70 | addsubassd | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  −  𝐸 )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 72 | 70 19 18 | addassd | ⊢ ( 𝜑  →  ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  =  ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 73 | 72 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  −  𝐸 )  =  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 ) ) | 
						
							| 74 | 64 71 73 | 3eqtr2d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 ) ) | 
						
							| 75 | 19 18 | addcld | ⊢ ( 𝜑  →  ( 1  +  ( ♯ ‘ 𝑊 ) )  ∈  ℂ ) | 
						
							| 76 | 70 75 | pncan2d | ⊢ ( 𝜑  →  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 )  =  ( 1  +  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 77 | 19 18 | addcomd | ⊢ ( 𝜑  →  ( 1  +  ( ♯ ‘ 𝑊 ) )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 78 | 74 76 77 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 79 | 18 19 78 | mvrraddd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑈 )  −  1 )  =  ( ♯ ‘ 𝑊 ) ) |