Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmco2.c |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
2 |
|
cycpmco2.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
3 |
|
cycpmco2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
4 |
|
cycpmco2.w |
⊢ ( 𝜑 → 𝑊 ∈ dom 𝑀 ) |
5 |
|
cycpmco2.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
6 |
|
cycpmco2.j |
⊢ ( 𝜑 → 𝐽 ∈ ran 𝑊 ) |
7 |
|
cycpmco2.e |
⊢ 𝐸 = ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) |
8 |
|
cycpmco2.1 |
⊢ 𝑈 = ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) |
9 |
1 2 3 4 5 6 7 8
|
cycpmco2lem1 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) ) |
10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐷 ∈ 𝑉 ) |
11 |
|
ssrab2 |
⊢ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⊆ Word 𝐷 |
12 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
13 |
1 2 12
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
15 |
14
|
fdmd |
⊢ ( 𝜑 → dom 𝑀 = { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
16 |
4 15
|
eleqtrd |
⊢ ( 𝜑 → 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
17 |
11 16
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
18 |
5
|
eldifad |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
19 |
18
|
s1cld |
⊢ ( 𝜑 → 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) |
20 |
|
splcl |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ∈ Word 𝐷 ) |
21 |
17 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ∈ Word 𝐷 ) |
22 |
8 21
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ Word 𝐷 ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑈 ∈ Word 𝐷 ) |
24 |
1 2 3 4 5 6 7 8
|
cycpmco2f1 |
⊢ ( 𝜑 → 𝑈 : dom 𝑈 –1-1→ 𝐷 ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑈 : dom 𝑈 –1-1→ 𝐷 ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
27 |
1 2 3 4 5 6 7 8
|
cycpmco2lem3 |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) − 1 ) = ( ♯ ‘ 𝑊 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
30 |
26 29
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐸 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
31 |
1 10 23 25 30
|
cycpmfv1 |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ 𝐸 ) ) = ( 𝑈 ‘ ( 𝐸 + 1 ) ) ) |
32 |
1 2 3 4 5 6 7 8
|
cycpmco2lem2 |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐸 ) = 𝐼 ) |
33 |
32
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ 𝐸 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ 𝐸 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) |
35 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝐷 ) |
36 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
37 |
17 36
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
38 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
39 |
37 38
|
sylib |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
41 |
|
swrdfv0 |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ‘ 0 ) = ( 𝑊 ‘ 𝐸 ) ) |
42 |
35 26 40 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ‘ 0 ) = ( 𝑊 ‘ 𝐸 ) ) |
43 |
|
ovexd |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ V ) |
44 |
7 43
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
45 |
|
splval |
⊢ ( ( 𝑊 ∈ dom 𝑀 ∧ ( 𝐸 ∈ V ∧ 𝐸 ∈ V ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) ) → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
46 |
4 44 44 19 45
|
syl13anc |
⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
47 |
8 46
|
syl5eq |
⊢ ( 𝜑 → 𝑈 = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
48 |
47
|
fveq1d |
⊢ ( 𝜑 → ( 𝑈 ‘ ( 𝐸 + 1 ) ) = ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ ( 𝐸 + 1 ) ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑈 ‘ ( 𝐸 + 1 ) ) = ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ ( 𝐸 + 1 ) ) ) |
50 |
|
pfxcl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ) |
51 |
17 50
|
syl |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ) |
52 |
|
ccatcl |
⊢ ( ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ) |
53 |
51 19 52
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ) |
55 |
|
swrdcl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) |
56 |
17 55
|
syl |
⊢ ( 𝜑 → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) |
58 |
|
1z |
⊢ 1 ∈ ℤ |
59 |
|
fzoaddel |
⊢ ( ( 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 1 ∈ ℤ ) → ( 𝐸 + 1 ) ∈ ( ( 0 + 1 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
60 |
58 59
|
mpan2 |
⊢ ( 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐸 + 1 ) ∈ ( ( 0 + 1 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
61 |
|
elfzolt2b |
⊢ ( ( 𝐸 + 1 ) ∈ ( ( 0 + 1 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( 𝐸 + 1 ) ∈ ( ( 𝐸 + 1 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
62 |
60 61
|
syl |
⊢ ( 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐸 + 1 ) ∈ ( ( 𝐸 + 1 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
63 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐸 + 1 ) ∈ ( ( 𝐸 + 1 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
64 |
|
ccatws1len |
⊢ ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) ) |
65 |
51 64
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) ) |
66 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
67 |
|
dmeq |
⊢ ( 𝑤 = 𝑊 → dom 𝑤 = dom 𝑊 ) |
68 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝐷 = 𝐷 ) |
69 |
66 67 68
|
f1eq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
70 |
69
|
elrab3 |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
71 |
70
|
biimpa |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
72 |
17 16 71
|
syl2anc |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
73 |
|
f1cnv |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
74 |
72 73
|
syl |
⊢ ( 𝜑 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
75 |
|
f1of |
⊢ ( ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
76 |
74 75
|
syl |
⊢ ( 𝜑 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
77 |
76 6
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ dom 𝑊 ) |
78 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐷 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
79 |
17 78
|
syl |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
80 |
77 79
|
eleqtrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
81 |
|
fzofzp1 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
82 |
80 81
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
83 |
7 82
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
84 |
|
pfxlen |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) = 𝐸 ) |
85 |
17 83 84
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) = 𝐸 ) |
86 |
85
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) = ( 𝐸 + 1 ) ) |
87 |
65 86
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( 𝐸 + 1 ) ) |
88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( 𝐸 + 1 ) ) |
89 |
47
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
90 |
|
ccatlen |
⊢ ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ∧ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) → ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
91 |
53 56 90
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
92 |
|
swrdlen |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) |
93 |
17 83 39 92
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) |
94 |
87 93
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
95 |
89 91 94
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
96 |
|
fz0ssnn0 |
⊢ ( 0 ... ( ♯ ‘ 𝑊 ) ) ⊆ ℕ0 |
97 |
96 83
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
98 |
97
|
nn0zd |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
99 |
98
|
peano2zd |
⊢ ( 𝜑 → ( 𝐸 + 1 ) ∈ ℤ ) |
100 |
99
|
zcnd |
⊢ ( 𝜑 → ( 𝐸 + 1 ) ∈ ℂ ) |
101 |
37
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
102 |
97
|
nn0cnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
103 |
100 101 102
|
addsubassd |
⊢ ( 𝜑 → ( ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) − 𝐸 ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
104 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
105 |
102 104 101
|
addassd |
⊢ ( 𝜑 → ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) = ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) ) |
106 |
105
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) − 𝐸 ) = ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) ) |
107 |
95 103 106
|
3eqtr2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) ) |
108 |
104 101
|
addcld |
⊢ ( 𝜑 → ( 1 + ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) |
109 |
102 108
|
pncan2d |
⊢ ( 𝜑 → ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) = ( 1 + ( ♯ ‘ 𝑊 ) ) ) |
110 |
104 101
|
addcomd |
⊢ ( 𝜑 → ( 1 + ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
111 |
107 109 110
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
112 |
89 111 91
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
113 |
112
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
114 |
88 113
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ..^ ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) = ( ( 𝐸 + 1 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
115 |
63 114
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐸 + 1 ) ∈ ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ..^ ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) |
116 |
|
ccatval2 |
⊢ ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ∧ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ∧ ( 𝐸 + 1 ) ∈ ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ..^ ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) → ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ ( 𝐸 + 1 ) ) = ( ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ‘ ( ( 𝐸 + 1 ) − ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) ) ) |
117 |
54 57 115 116
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ ( 𝐸 + 1 ) ) = ( ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ‘ ( ( 𝐸 + 1 ) − ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) ) ) |
118 |
87
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐸 + 1 ) − ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) = ( ( 𝐸 + 1 ) − ( 𝐸 + 1 ) ) ) |
119 |
100
|
subidd |
⊢ ( 𝜑 → ( ( 𝐸 + 1 ) − ( 𝐸 + 1 ) ) = 0 ) |
120 |
118 119
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 + 1 ) − ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) = 0 ) |
121 |
120
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ‘ ( ( 𝐸 + 1 ) − ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) ) = ( ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ‘ 0 ) ) |
122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ‘ ( ( 𝐸 + 1 ) − ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) ) = ( ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ‘ 0 ) ) |
123 |
49 117 122
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑈 ‘ ( 𝐸 + 1 ) ) = ( ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ‘ 0 ) ) |
124 |
7
|
fveq2i |
⊢ ( 𝑊 ‘ 𝐸 ) = ( 𝑊 ‘ ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ) |
125 |
124
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝐸 ) = ( 𝑊 ‘ ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ) ) |
126 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
127 |
7
|
oveq1i |
⊢ ( 𝐸 − 1 ) = ( ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) − 1 ) |
128 |
|
elfzonn0 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℕ0 ) |
129 |
80 128
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℕ0 ) |
130 |
129
|
nn0cnd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℂ ) |
131 |
130 104
|
pncand |
⊢ ( 𝜑 → ( ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) − 1 ) = ( ◡ 𝑊 ‘ 𝐽 ) ) |
132 |
127 131
|
eqtr2id |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) = ( 𝐸 − 1 ) ) |
133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ◡ 𝑊 ‘ 𝐽 ) = ( 𝐸 − 1 ) ) |
134 |
|
nn0p1gt0 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℕ0 → 0 < ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ) |
135 |
129 134
|
syl |
⊢ ( 𝜑 → 0 < ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ) |
136 |
135 7
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝐸 ) |
137 |
136
|
gt0ne0d |
⊢ ( 𝜑 → 𝐸 ≠ 0 ) |
138 |
137
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐸 ≠ 0 ) |
139 |
|
fzo1fzo0n0 |
⊢ ( 𝐸 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝐸 ≠ 0 ) ) |
140 |
26 138 139
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐸 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) |
141 |
|
elfzo1elm1fzo0 |
⊢ ( 𝐸 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐸 − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
142 |
140 141
|
syl |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐸 − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
143 |
133 142
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
144 |
1 10 35 126 143
|
cycpmfv1 |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) = ( 𝑊 ‘ ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ) ) |
145 |
|
f1f1orn |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
146 |
72 145
|
syl |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
147 |
|
f1ocnvfv2 |
⊢ ( ( 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ∧ 𝐽 ∈ ran 𝑊 ) → ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = 𝐽 ) |
148 |
146 6 147
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = 𝐽 ) |
149 |
148
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) ) |
150 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) ) |
151 |
125 144 150
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) = ( 𝑊 ‘ 𝐸 ) ) |
152 |
42 123 151
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑈 ‘ ( 𝐸 + 1 ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) ) |
153 |
31 34 152
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) |
154 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) ) |
155 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → 𝐷 ∈ 𝑉 ) |
156 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝐷 ) |
157 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
158 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → 0 < 𝐸 ) |
159 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → 𝐸 = ( ♯ ‘ 𝑊 ) ) |
160 |
158 159
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → 0 < ( ♯ ‘ 𝑊 ) ) |
161 |
|
oveq1 |
⊢ ( 𝐸 = ( ♯ ‘ 𝑊 ) → ( 𝐸 − 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
162 |
132 161
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → ( ◡ 𝑊 ‘ 𝐽 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
163 |
1 155 156 157 160 162
|
cycpmfv2 |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) = ( 𝑊 ‘ 0 ) ) |
164 |
154 163
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) = ( 𝑊 ‘ 0 ) ) |
165 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → 𝑈 ∈ Word 𝐷 ) |
166 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → 𝑈 : dom 𝑈 –1-1→ 𝐷 ) |
167 |
|
nn0p1gt0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
168 |
37 167
|
syl |
⊢ ( 𝜑 → 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
169 |
168 111
|
breqtrrd |
⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝑈 ) ) |
170 |
169
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → 0 < ( ♯ ‘ 𝑈 ) ) |
171 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑈 ) − 1 ) = ( ♯ ‘ 𝑊 ) ) |
172 |
159 171
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → 𝐸 = ( ( ♯ ‘ 𝑈 ) − 1 ) ) |
173 |
1 155 165 166 170 172
|
cycpmfv2 |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ 𝐸 ) ) = ( 𝑈 ‘ 0 ) ) |
174 |
47
|
fveq1d |
⊢ ( 𝜑 → ( 𝑈 ‘ 0 ) = ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 0 ) ) |
175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → ( 𝑈 ‘ 0 ) = ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 0 ) ) |
176 |
|
nn0p1nn |
⊢ ( 𝐸 ∈ ℕ0 → ( 𝐸 + 1 ) ∈ ℕ ) |
177 |
97 176
|
syl |
⊢ ( 𝜑 → ( 𝐸 + 1 ) ∈ ℕ ) |
178 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( 𝐸 + 1 ) ) ↔ ( 𝐸 + 1 ) ∈ ℕ ) |
179 |
177 178
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( 𝐸 + 1 ) ) ) |
180 |
87
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) = ( 0 ..^ ( 𝐸 + 1 ) ) ) |
181 |
179 180
|
eleqtrrd |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) ) |
182 |
|
ccatval1 |
⊢ ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ∧ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) ) ) → ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 0 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ‘ 0 ) ) |
183 |
53 56 181 182
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 0 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ‘ 0 ) ) |
184 |
|
nn0p1nn |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℕ0 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ℕ ) |
185 |
129 184
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ℕ ) |
186 |
7 185
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
187 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝐸 ) ↔ 𝐸 ∈ ℕ ) |
188 |
186 187
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝐸 ) ) |
189 |
85
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) ) = ( 0 ..^ 𝐸 ) ) |
190 |
188 189
|
eleqtrrd |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) ) ) |
191 |
|
ccatval1 |
⊢ ( ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) ) ) → ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ‘ 0 ) = ( ( 𝑊 prefix 𝐸 ) ‘ 0 ) ) |
192 |
51 19 190 191
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ‘ 0 ) = ( ( 𝑊 prefix 𝐸 ) ‘ 0 ) ) |
193 |
|
fzne1 |
⊢ ( ( 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐸 ≠ 0 ) → 𝐸 ∈ ( ( 0 + 1 ) ... ( ♯ ‘ 𝑊 ) ) ) |
194 |
83 137 193
|
syl2anc |
⊢ ( 𝜑 → 𝐸 ∈ ( ( 0 + 1 ) ... ( ♯ ‘ 𝑊 ) ) ) |
195 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
196 |
195
|
oveq1i |
⊢ ( ( 0 + 1 ) ... ( ♯ ‘ 𝑊 ) ) = ( 1 ... ( ♯ ‘ 𝑊 ) ) |
197 |
194 196
|
eleqtrdi |
⊢ ( 𝜑 → 𝐸 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
198 |
|
pfxfv0 |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝐸 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
199 |
17 197 198
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑊 prefix 𝐸 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
200 |
183 192 199
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
201 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
202 |
173 175 201
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ 𝐸 ) ) = ( 𝑊 ‘ 0 ) ) |
203 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ 𝐸 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) |
204 |
164 202 203
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐸 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) |
205 |
|
elfzr |
⊢ ( 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∨ 𝐸 = ( ♯ ‘ 𝑊 ) ) ) |
206 |
83 205
|
syl |
⊢ ( 𝜑 → ( 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∨ 𝐸 = ( ♯ ‘ 𝑊 ) ) ) |
207 |
153 204 206
|
mpjaodan |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐽 ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) |
208 |
9 207
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ ( ( 𝑀 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐼 ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐼 ) ) |