| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 2 |  | cycpmco2.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpmco2.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | cycpmco2.w | ⊢ ( 𝜑  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 5 |  | cycpmco2.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 6 |  | cycpmco2.j | ⊢ ( 𝜑  →  𝐽  ∈  ran  𝑊 ) | 
						
							| 7 |  | cycpmco2.e | ⊢ 𝐸  =  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) | 
						
							| 8 |  | cycpmco2.1 | ⊢ 𝑈  =  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) | 
						
							| 9 |  | ovexd | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  V ) | 
						
							| 10 | 7 9 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  V ) | 
						
							| 11 | 5 | eldifad | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 12 | 11 | s1cld | ⊢ ( 𝜑  →  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) | 
						
							| 13 |  | splval | ⊢ ( ( 𝑊  ∈  dom  𝑀  ∧  ( 𝐸  ∈  V  ∧  𝐸  ∈  V  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) )  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 14 | 4 10 10 12 13 | syl13anc | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 15 | 8 14 | eqtrid | ⊢ ( 𝜑  →  𝑈  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 16 | 15 | fveq1d | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝐸 )  =  ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 𝐸 ) ) | 
						
							| 17 |  | ssrab2 | ⊢ { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ⊆  Word  𝐷 | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 19 | 1 2 18 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝜑  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 21 | 20 | fdmd | ⊢ ( 𝜑  →  dom  𝑀  =  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 22 | 4 21 | eleqtrd | ⊢ ( 𝜑  →  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 23 | 17 22 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 24 |  | pfxcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 26 |  | ccatcl | ⊢ ( ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 )  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 27 | 25 12 26 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 28 |  | swrdcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 29 | 23 28 | syl | ⊢ ( 𝜑  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 30 |  | fz0ssnn0 | ⊢ ( 0 ... ( ♯ ‘ 𝑊 ) )  ⊆  ℕ0 | 
						
							| 31 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 32 |  | dmeq | ⊢ ( 𝑤  =  𝑊  →  dom  𝑤  =  dom  𝑊 ) | 
						
							| 33 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝐷  =  𝐷 ) | 
						
							| 34 | 31 32 33 | f1eq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 35 | 34 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 36 | 22 35 | sylib | ⊢ ( 𝜑  →  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 37 | 36 | simprd | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 38 |  | f1cnv | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊 ) | 
						
							| 39 |  | f1of | ⊢ ( ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 40 | 37 38 39 | 3syl | ⊢ ( 𝜑  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 41 | 40 6 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  dom  𝑊 ) | 
						
							| 42 |  | wrddm | ⊢ ( 𝑊  ∈  Word  𝐷  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 43 | 23 42 | syl | ⊢ ( 𝜑  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 44 | 41 43 | eleqtrd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 45 |  | fzofzp1 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 47 | 7 46 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 48 | 30 47 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℕ0 ) | 
						
							| 49 |  | fzonn0p1 | ⊢ ( 𝐸  ∈  ℕ0  →  𝐸  ∈  ( 0 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 51 |  | ccatws1len | ⊢ ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 ) ) | 
						
							| 52 | 23 24 51 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 ) ) | 
						
							| 53 |  | pfxlen | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  =  𝐸 ) | 
						
							| 54 | 23 47 53 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  =  𝐸 ) | 
						
							| 55 | 54 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 )  =  ( 𝐸  +  1 ) ) | 
						
							| 56 | 52 55 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( 𝐸  +  1 ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ) )  =  ( 0 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 58 | 50 57 | eleqtrrd | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ) ) ) | 
						
							| 59 |  | ccatval1 | ⊢ ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷  ∧  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ) ) )  →  ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 𝐸 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ 𝐸 ) ) | 
						
							| 60 | 27 29 58 59 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ‘ 𝐸 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ 𝐸 ) ) | 
						
							| 61 | 48 | nn0zd | ⊢ ( 𝜑  →  𝐸  ∈  ℤ ) | 
						
							| 62 |  | elfzomin | ⊢ ( 𝐸  ∈  ℤ  →  𝐸  ∈  ( 𝐸 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 63 | 61 62 | syl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝐸 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 64 |  | s1len | ⊢ ( ♯ ‘ 〈“ 𝐼 ”〉 )  =  1 | 
						
							| 65 | 64 | a1i | ⊢ ( 𝜑  →  ( ♯ ‘ 〈“ 𝐼 ”〉 )  =  1 ) | 
						
							| 66 | 54 65 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  ( ♯ ‘ 〈“ 𝐼 ”〉 ) )  =  ( 𝐸  +  1 ) ) | 
						
							| 67 | 54 66 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) ..^ ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) )  =  ( 𝐸 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 68 | 63 67 | eleqtrrd | ⊢ ( 𝜑  →  𝐸  ∈  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) ..^ ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) ) ) | 
						
							| 69 |  | ccatval2 | ⊢ ( ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷  ∧  𝐸  ∈  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) ..^ ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) ) )  →  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ 𝐸 )  =  ( 〈“ 𝐼 ”〉 ‘ ( 𝐸  −  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) ) ) ) | 
						
							| 70 | 25 12 68 69 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) ‘ 𝐸 )  =  ( 〈“ 𝐼 ”〉 ‘ ( 𝐸  −  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) ) ) ) | 
						
							| 71 | 16 60 70 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝐸 )  =  ( 〈“ 𝐼 ”〉 ‘ ( 𝐸  −  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) ) ) ) | 
						
							| 72 | 54 | oveq2d | ⊢ ( 𝜑  →  ( 𝐸  −  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) )  =  ( 𝐸  −  𝐸 ) ) | 
						
							| 73 | 48 | nn0cnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 74 | 73 | subidd | ⊢ ( 𝜑  →  ( 𝐸  −  𝐸 )  =  0 ) | 
						
							| 75 | 72 74 | eqtrd | ⊢ ( 𝜑  →  ( 𝐸  −  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) )  =  0 ) | 
						
							| 76 | 75 | fveq2d | ⊢ ( 𝜑  →  ( 〈“ 𝐼 ”〉 ‘ ( 𝐸  −  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) ) ) )  =  ( 〈“ 𝐼 ”〉 ‘ 0 ) ) | 
						
							| 77 |  | s1fv | ⊢ ( 𝐼  ∈  ( 𝐷  ∖  ran  𝑊 )  →  ( 〈“ 𝐼 ”〉 ‘ 0 )  =  𝐼 ) | 
						
							| 78 | 5 77 | syl | ⊢ ( 𝜑  →  ( 〈“ 𝐼 ”〉 ‘ 0 )  =  𝐼 ) | 
						
							| 79 | 71 76 78 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝐸 )  =  𝐼 ) |