Metamath Proof Explorer


Theorem cycpmco2lem2

Description: Lemma for cycpmco2 . (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M = toCyc D
cycpmco2.s S = SymGrp D
cycpmco2.d φ D V
cycpmco2.w φ W dom M
cycpmco2.i φ I D ran W
cycpmco2.j φ J ran W
cycpmco2.e E = W -1 J + 1
cycpmco2.1 U = W splice E E ⟨“ I ”⟩
Assertion cycpmco2lem2 φ U E = I

Proof

Step Hyp Ref Expression
1 cycpmco2.c M = toCyc D
2 cycpmco2.s S = SymGrp D
3 cycpmco2.d φ D V
4 cycpmco2.w φ W dom M
5 cycpmco2.i φ I D ran W
6 cycpmco2.j φ J ran W
7 cycpmco2.e E = W -1 J + 1
8 cycpmco2.1 U = W splice E E ⟨“ I ”⟩
9 ovexd φ W -1 J + 1 V
10 7 9 eqeltrid φ E V
11 5 eldifad φ I D
12 11 s1cld φ ⟨“ I ”⟩ Word D
13 splval W dom M E V E V ⟨“ I ”⟩ Word D W splice E E ⟨“ I ”⟩ = W prefix E ++ ⟨“ I ”⟩ ++ W substr E W
14 4 10 10 12 13 syl13anc φ W splice E E ⟨“ I ”⟩ = W prefix E ++ ⟨“ I ”⟩ ++ W substr E W
15 8 14 eqtrid φ U = W prefix E ++ ⟨“ I ”⟩ ++ W substr E W
16 15 fveq1d φ U E = W prefix E ++ ⟨“ I ”⟩ ++ W substr E W E
17 ssrab2 w Word D | w : dom w 1-1 D Word D
18 eqid Base S = Base S
19 1 2 18 tocycf D V M : w Word D | w : dom w 1-1 D Base S
20 3 19 syl φ M : w Word D | w : dom w 1-1 D Base S
21 20 fdmd φ dom M = w Word D | w : dom w 1-1 D
22 4 21 eleqtrd φ W w Word D | w : dom w 1-1 D
23 17 22 sselid φ W Word D
24 pfxcl W Word D W prefix E Word D
25 23 24 syl φ W prefix E Word D
26 ccatcl W prefix E Word D ⟨“ I ”⟩ Word D W prefix E ++ ⟨“ I ”⟩ Word D
27 25 12 26 syl2anc φ W prefix E ++ ⟨“ I ”⟩ Word D
28 swrdcl W Word D W substr E W Word D
29 23 28 syl φ W substr E W Word D
30 fz0ssnn0 0 W 0
31 id w = W w = W
32 dmeq w = W dom w = dom W
33 eqidd w = W D = D
34 31 32 33 f1eq123d w = W w : dom w 1-1 D W : dom W 1-1 D
35 34 elrab W w Word D | w : dom w 1-1 D W Word D W : dom W 1-1 D
36 22 35 sylib φ W Word D W : dom W 1-1 D
37 36 simprd φ W : dom W 1-1 D
38 f1cnv W : dom W 1-1 D W -1 : ran W 1-1 onto dom W
39 f1of W -1 : ran W 1-1 onto dom W W -1 : ran W dom W
40 37 38 39 3syl φ W -1 : ran W dom W
41 40 6 ffvelrnd φ W -1 J dom W
42 wrddm W Word D dom W = 0 ..^ W
43 23 42 syl φ dom W = 0 ..^ W
44 41 43 eleqtrd φ W -1 J 0 ..^ W
45 fzofzp1 W -1 J 0 ..^ W W -1 J + 1 0 W
46 44 45 syl φ W -1 J + 1 0 W
47 7 46 eqeltrid φ E 0 W
48 30 47 sselid φ E 0
49 fzonn0p1 E 0 E 0 ..^ E + 1
50 48 49 syl φ E 0 ..^ E + 1
51 ccatws1len W prefix E Word D W prefix E ++ ⟨“ I ”⟩ = W prefix E + 1
52 23 24 51 3syl φ W prefix E ++ ⟨“ I ”⟩ = W prefix E + 1
53 pfxlen W Word D E 0 W W prefix E = E
54 23 47 53 syl2anc φ W prefix E = E
55 54 oveq1d φ W prefix E + 1 = E + 1
56 52 55 eqtrd φ W prefix E ++ ⟨“ I ”⟩ = E + 1
57 56 oveq2d φ 0 ..^ W prefix E ++ ⟨“ I ”⟩ = 0 ..^ E + 1
58 50 57 eleqtrrd φ E 0 ..^ W prefix E ++ ⟨“ I ”⟩
59 ccatval1 W prefix E ++ ⟨“ I ”⟩ Word D W substr E W Word D E 0 ..^ W prefix E ++ ⟨“ I ”⟩ W prefix E ++ ⟨“ I ”⟩ ++ W substr E W E = W prefix E ++ ⟨“ I ”⟩ E
60 27 29 58 59 syl3anc φ W prefix E ++ ⟨“ I ”⟩ ++ W substr E W E = W prefix E ++ ⟨“ I ”⟩ E
61 48 nn0zd φ E
62 elfzomin E E E ..^ E + 1
63 61 62 syl φ E E ..^ E + 1
64 s1len ⟨“ I ”⟩ = 1
65 64 a1i φ ⟨“ I ”⟩ = 1
66 54 65 oveq12d φ W prefix E + ⟨“ I ”⟩ = E + 1
67 54 66 oveq12d φ W prefix E ..^ W prefix E + ⟨“ I ”⟩ = E ..^ E + 1
68 63 67 eleqtrrd φ E W prefix E ..^ W prefix E + ⟨“ I ”⟩
69 ccatval2 W prefix E Word D ⟨“ I ”⟩ Word D E W prefix E ..^ W prefix E + ⟨“ I ”⟩ W prefix E ++ ⟨“ I ”⟩ E = ⟨“ I ”⟩ E W prefix E
70 25 12 68 69 syl3anc φ W prefix E ++ ⟨“ I ”⟩ E = ⟨“ I ”⟩ E W prefix E
71 16 60 70 3eqtrd φ U E = ⟨“ I ”⟩ E W prefix E
72 54 oveq2d φ E W prefix E = E E
73 48 nn0cnd φ E
74 73 subidd φ E E = 0
75 72 74 eqtrd φ E W prefix E = 0
76 75 fveq2d φ ⟨“ I ”⟩ E W prefix E = ⟨“ I ”⟩ 0
77 s1fv I D ran W ⟨“ I ”⟩ 0 = I
78 5 77 syl φ ⟨“ I ”⟩ 0 = I
79 71 76 78 3eqtrd φ U E = I