Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmco2.c |
|
2 |
|
cycpmco2.s |
|
3 |
|
cycpmco2.d |
|
4 |
|
cycpmco2.w |
|
5 |
|
cycpmco2.i |
|
6 |
|
cycpmco2.j |
|
7 |
|
cycpmco2.e |
|
8 |
|
cycpmco2.1 |
|
9 |
|
ovexd |
|
10 |
7 9
|
eqeltrid |
|
11 |
5
|
eldifad |
|
12 |
11
|
s1cld |
|
13 |
|
splval |
|
14 |
4 10 10 12 13
|
syl13anc |
|
15 |
8 14
|
eqtrid |
|
16 |
15
|
fveq1d |
|
17 |
|
ssrab2 |
|
18 |
|
eqid |
|
19 |
1 2 18
|
tocycf |
|
20 |
3 19
|
syl |
|
21 |
20
|
fdmd |
|
22 |
4 21
|
eleqtrd |
|
23 |
17 22
|
sselid |
|
24 |
|
pfxcl |
|
25 |
23 24
|
syl |
|
26 |
|
ccatcl |
|
27 |
25 12 26
|
syl2anc |
|
28 |
|
swrdcl |
|
29 |
23 28
|
syl |
|
30 |
|
fz0ssnn0 |
|
31 |
|
id |
|
32 |
|
dmeq |
|
33 |
|
eqidd |
|
34 |
31 32 33
|
f1eq123d |
|
35 |
34
|
elrab |
|
36 |
22 35
|
sylib |
|
37 |
36
|
simprd |
|
38 |
|
f1cnv |
|
39 |
|
f1of |
|
40 |
37 38 39
|
3syl |
|
41 |
40 6
|
ffvelrnd |
|
42 |
|
wrddm |
|
43 |
23 42
|
syl |
|
44 |
41 43
|
eleqtrd |
|
45 |
|
fzofzp1 |
|
46 |
44 45
|
syl |
|
47 |
7 46
|
eqeltrid |
|
48 |
30 47
|
sselid |
|
49 |
|
fzonn0p1 |
|
50 |
48 49
|
syl |
|
51 |
|
ccatws1len |
|
52 |
23 24 51
|
3syl |
|
53 |
|
pfxlen |
|
54 |
23 47 53
|
syl2anc |
|
55 |
54
|
oveq1d |
|
56 |
52 55
|
eqtrd |
|
57 |
56
|
oveq2d |
|
58 |
50 57
|
eleqtrrd |
|
59 |
|
ccatval1 |
|
60 |
27 29 58 59
|
syl3anc |
|
61 |
48
|
nn0zd |
|
62 |
|
elfzomin |
|
63 |
61 62
|
syl |
|
64 |
|
s1len |
|
65 |
64
|
a1i |
|
66 |
54 65
|
oveq12d |
|
67 |
54 66
|
oveq12d |
|
68 |
63 67
|
eleqtrrd |
|
69 |
|
ccatval2 |
|
70 |
25 12 68 69
|
syl3anc |
|
71 |
16 60 70
|
3eqtrd |
|
72 |
54
|
oveq2d |
|
73 |
48
|
nn0cnd |
|
74 |
73
|
subidd |
|
75 |
72 74
|
eqtrd |
|
76 |
75
|
fveq2d |
|
77 |
|
s1fv |
|
78 |
5 77
|
syl |
|
79 |
71 76 78
|
3eqtrd |
|