| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmco2.c |
|
| 2 |
|
cycpmco2.s |
|
| 3 |
|
cycpmco2.d |
|
| 4 |
|
cycpmco2.w |
|
| 5 |
|
cycpmco2.i |
|
| 6 |
|
cycpmco2.j |
|
| 7 |
|
cycpmco2.e |
|
| 8 |
|
cycpmco2.1 |
|
| 9 |
|
ssrab2 |
|
| 10 |
|
eqid |
|
| 11 |
1 2 10
|
tocycf |
|
| 12 |
3 11
|
syl |
|
| 13 |
12
|
fdmd |
|
| 14 |
4 13
|
eleqtrd |
|
| 15 |
9 14
|
sselid |
|
| 16 |
|
lencl |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
nn0cnd |
|
| 19 |
|
1cnd |
|
| 20 |
|
ovexd |
|
| 21 |
7 20
|
eqeltrid |
|
| 22 |
5
|
eldifad |
|
| 23 |
22
|
s1cld |
|
| 24 |
|
splval |
|
| 25 |
4 21 21 23 24
|
syl13anc |
|
| 26 |
8 25
|
eqtrid |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
pfxcl |
|
| 29 |
15 28
|
syl |
|
| 30 |
|
ccatcl |
|
| 31 |
29 23 30
|
syl2anc |
|
| 32 |
|
swrdcl |
|
| 33 |
15 32
|
syl |
|
| 34 |
|
ccatlen |
|
| 35 |
31 33 34
|
syl2anc |
|
| 36 |
|
ccatws1len |
|
| 37 |
29 36
|
syl |
|
| 38 |
|
id |
|
| 39 |
|
dmeq |
|
| 40 |
|
eqidd |
|
| 41 |
38 39 40
|
f1eq123d |
|
| 42 |
41
|
elrab |
|
| 43 |
14 42
|
sylib |
|
| 44 |
|
f1cnv |
|
| 45 |
43 44
|
simpl2im |
|
| 46 |
|
f1of |
|
| 47 |
45 46
|
syl |
|
| 48 |
47 6
|
ffvelcdmd |
|
| 49 |
|
wrddm |
|
| 50 |
15 49
|
syl |
|
| 51 |
48 50
|
eleqtrd |
|
| 52 |
|
fzofzp1 |
|
| 53 |
51 52
|
syl |
|
| 54 |
7 53
|
eqeltrid |
|
| 55 |
|
pfxlen |
|
| 56 |
15 54 55
|
syl2anc |
|
| 57 |
56
|
oveq1d |
|
| 58 |
37 57
|
eqtrd |
|
| 59 |
|
nn0fz0 |
|
| 60 |
17 59
|
sylib |
|
| 61 |
|
swrdlen |
|
| 62 |
15 54 60 61
|
syl3anc |
|
| 63 |
58 62
|
oveq12d |
|
| 64 |
27 35 63
|
3eqtrd |
|
| 65 |
|
fz0ssnn0 |
|
| 66 |
65 54
|
sselid |
|
| 67 |
66
|
nn0zd |
|
| 68 |
67
|
peano2zd |
|
| 69 |
68
|
zcnd |
|
| 70 |
66
|
nn0cnd |
|
| 71 |
69 18 70
|
addsubassd |
|
| 72 |
70 19 18
|
addassd |
|
| 73 |
72
|
oveq1d |
|
| 74 |
64 71 73
|
3eqtr2d |
|
| 75 |
19 18
|
addcld |
|
| 76 |
70 75
|
pncan2d |
|
| 77 |
19 18
|
addcomd |
|
| 78 |
74 76 77
|
3eqtrd |
|
| 79 |
18 19 78
|
mvrraddd |
|