| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmco2.c |
|- M = ( toCyc ` D ) |
| 2 |
|
cycpmco2.s |
|- S = ( SymGrp ` D ) |
| 3 |
|
cycpmco2.d |
|- ( ph -> D e. V ) |
| 4 |
|
cycpmco2.w |
|- ( ph -> W e. dom M ) |
| 5 |
|
cycpmco2.i |
|- ( ph -> I e. ( D \ ran W ) ) |
| 6 |
|
cycpmco2.j |
|- ( ph -> J e. ran W ) |
| 7 |
|
cycpmco2.e |
|- E = ( ( `' W ` J ) + 1 ) |
| 8 |
|
cycpmco2.1 |
|- U = ( W splice <. E , E , <" I "> >. ) |
| 9 |
|
ssrab2 |
|- { w e. Word D | w : dom w -1-1-> D } C_ Word D |
| 10 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 11 |
1 2 10
|
tocycf |
|- ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
| 12 |
3 11
|
syl |
|- ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
| 13 |
12
|
fdmd |
|- ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) |
| 14 |
4 13
|
eleqtrd |
|- ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) |
| 15 |
9 14
|
sselid |
|- ( ph -> W e. Word D ) |
| 16 |
|
lencl |
|- ( W e. Word D -> ( # ` W ) e. NN0 ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
| 18 |
17
|
nn0cnd |
|- ( ph -> ( # ` W ) e. CC ) |
| 19 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 20 |
|
ovexd |
|- ( ph -> ( ( `' W ` J ) + 1 ) e. _V ) |
| 21 |
7 20
|
eqeltrid |
|- ( ph -> E e. _V ) |
| 22 |
5
|
eldifad |
|- ( ph -> I e. D ) |
| 23 |
22
|
s1cld |
|- ( ph -> <" I "> e. Word D ) |
| 24 |
|
splval |
|- ( ( W e. dom M /\ ( E e. _V /\ E e. _V /\ <" I "> e. Word D ) ) -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
| 25 |
4 21 21 23 24
|
syl13anc |
|- ( ph -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
| 26 |
8 25
|
eqtrid |
|- ( ph -> U = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
| 27 |
26
|
fveq2d |
|- ( ph -> ( # ` U ) = ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) ) |
| 28 |
|
pfxcl |
|- ( W e. Word D -> ( W prefix E ) e. Word D ) |
| 29 |
15 28
|
syl |
|- ( ph -> ( W prefix E ) e. Word D ) |
| 30 |
|
ccatcl |
|- ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) |
| 31 |
29 23 30
|
syl2anc |
|- ( ph -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) |
| 32 |
|
swrdcl |
|- ( W e. Word D -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) |
| 33 |
15 32
|
syl |
|- ( ph -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) |
| 34 |
|
ccatlen |
|- ( ( ( ( W prefix E ) ++ <" I "> ) e. Word D /\ ( W substr <. E , ( # ` W ) >. ) e. Word D ) -> ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) ) |
| 35 |
31 33 34
|
syl2anc |
|- ( ph -> ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) ) |
| 36 |
|
ccatws1len |
|- ( ( W prefix E ) e. Word D -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) |
| 37 |
29 36
|
syl |
|- ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) |
| 38 |
|
id |
|- ( w = W -> w = W ) |
| 39 |
|
dmeq |
|- ( w = W -> dom w = dom W ) |
| 40 |
|
eqidd |
|- ( w = W -> D = D ) |
| 41 |
38 39 40
|
f1eq123d |
|- ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) |
| 42 |
41
|
elrab |
|- ( W e. { w e. Word D | w : dom w -1-1-> D } <-> ( W e. Word D /\ W : dom W -1-1-> D ) ) |
| 43 |
14 42
|
sylib |
|- ( ph -> ( W e. Word D /\ W : dom W -1-1-> D ) ) |
| 44 |
|
f1cnv |
|- ( W : dom W -1-1-> D -> `' W : ran W -1-1-onto-> dom W ) |
| 45 |
43 44
|
simpl2im |
|- ( ph -> `' W : ran W -1-1-onto-> dom W ) |
| 46 |
|
f1of |
|- ( `' W : ran W -1-1-onto-> dom W -> `' W : ran W --> dom W ) |
| 47 |
45 46
|
syl |
|- ( ph -> `' W : ran W --> dom W ) |
| 48 |
47 6
|
ffvelcdmd |
|- ( ph -> ( `' W ` J ) e. dom W ) |
| 49 |
|
wrddm |
|- ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) |
| 50 |
15 49
|
syl |
|- ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) |
| 51 |
48 50
|
eleqtrd |
|- ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) ) |
| 52 |
|
fzofzp1 |
|- ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
| 53 |
51 52
|
syl |
|- ( ph -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
| 54 |
7 53
|
eqeltrid |
|- ( ph -> E e. ( 0 ... ( # ` W ) ) ) |
| 55 |
|
pfxlen |
|- ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix E ) ) = E ) |
| 56 |
15 54 55
|
syl2anc |
|- ( ph -> ( # ` ( W prefix E ) ) = E ) |
| 57 |
56
|
oveq1d |
|- ( ph -> ( ( # ` ( W prefix E ) ) + 1 ) = ( E + 1 ) ) |
| 58 |
37 57
|
eqtrd |
|- ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( E + 1 ) ) |
| 59 |
|
nn0fz0 |
|- ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
| 60 |
17 59
|
sylib |
|- ( ph -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
| 61 |
|
swrdlen |
|- ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. E , ( # ` W ) >. ) ) = ( ( # ` W ) - E ) ) |
| 62 |
15 54 60 61
|
syl3anc |
|- ( ph -> ( # ` ( W substr <. E , ( # ` W ) >. ) ) = ( ( # ` W ) - E ) ) |
| 63 |
58 62
|
oveq12d |
|- ( ph -> ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) |
| 64 |
27 35 63
|
3eqtrd |
|- ( ph -> ( # ` U ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) |
| 65 |
|
fz0ssnn0 |
|- ( 0 ... ( # ` W ) ) C_ NN0 |
| 66 |
65 54
|
sselid |
|- ( ph -> E e. NN0 ) |
| 67 |
66
|
nn0zd |
|- ( ph -> E e. ZZ ) |
| 68 |
67
|
peano2zd |
|- ( ph -> ( E + 1 ) e. ZZ ) |
| 69 |
68
|
zcnd |
|- ( ph -> ( E + 1 ) e. CC ) |
| 70 |
66
|
nn0cnd |
|- ( ph -> E e. CC ) |
| 71 |
69 18 70
|
addsubassd |
|- ( ph -> ( ( ( E + 1 ) + ( # ` W ) ) - E ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) |
| 72 |
70 19 18
|
addassd |
|- ( ph -> ( ( E + 1 ) + ( # ` W ) ) = ( E + ( 1 + ( # ` W ) ) ) ) |
| 73 |
72
|
oveq1d |
|- ( ph -> ( ( ( E + 1 ) + ( # ` W ) ) - E ) = ( ( E + ( 1 + ( # ` W ) ) ) - E ) ) |
| 74 |
64 71 73
|
3eqtr2d |
|- ( ph -> ( # ` U ) = ( ( E + ( 1 + ( # ` W ) ) ) - E ) ) |
| 75 |
19 18
|
addcld |
|- ( ph -> ( 1 + ( # ` W ) ) e. CC ) |
| 76 |
70 75
|
pncan2d |
|- ( ph -> ( ( E + ( 1 + ( # ` W ) ) ) - E ) = ( 1 + ( # ` W ) ) ) |
| 77 |
19 18
|
addcomd |
|- ( ph -> ( 1 + ( # ` W ) ) = ( ( # ` W ) + 1 ) ) |
| 78 |
74 76 77
|
3eqtrd |
|- ( ph -> ( # ` U ) = ( ( # ` W ) + 1 ) ) |
| 79 |
18 19 78
|
mvrraddd |
|- ( ph -> ( ( # ` U ) - 1 ) = ( # ` W ) ) |