| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c |  |-  M = ( toCyc ` D ) | 
						
							| 2 |  | cycpmco2.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpmco2.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | cycpmco2.w |  |-  ( ph -> W e. dom M ) | 
						
							| 5 |  | cycpmco2.i |  |-  ( ph -> I e. ( D \ ran W ) ) | 
						
							| 6 |  | cycpmco2.j |  |-  ( ph -> J e. ran W ) | 
						
							| 7 |  | cycpmco2.e |  |-  E = ( ( `' W ` J ) + 1 ) | 
						
							| 8 |  | cycpmco2.1 |  |-  U = ( W splice <. E , E , <" I "> >. ) | 
						
							| 9 |  | ssrab2 |  |-  { w e. Word D | w : dom w -1-1-> D } C_ Word D | 
						
							| 10 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 11 | 1 2 10 | tocycf |  |-  ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 12 | 3 11 | syl |  |-  ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 13 | 12 | fdmd |  |-  ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 14 | 4 13 | eleqtrd |  |-  ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 15 | 9 14 | sselid |  |-  ( ph -> W e. Word D ) | 
						
							| 16 |  | lencl |  |-  ( W e. Word D -> ( # ` W ) e. NN0 ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> ( # ` W ) e. NN0 ) | 
						
							| 18 | 17 | nn0cnd |  |-  ( ph -> ( # ` W ) e. CC ) | 
						
							| 19 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 20 |  | ovexd |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. _V ) | 
						
							| 21 | 7 20 | eqeltrid |  |-  ( ph -> E e. _V ) | 
						
							| 22 | 5 | eldifad |  |-  ( ph -> I e. D ) | 
						
							| 23 | 22 | s1cld |  |-  ( ph -> <" I "> e. Word D ) | 
						
							| 24 |  | splval |  |-  ( ( W e. dom M /\ ( E e. _V /\ E e. _V /\ <" I "> e. Word D ) ) -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 25 | 4 21 21 23 24 | syl13anc |  |-  ( ph -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 26 | 8 25 | eqtrid |  |-  ( ph -> U = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( ph -> ( # ` U ) = ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) ) | 
						
							| 28 |  | pfxcl |  |-  ( W e. Word D -> ( W prefix E ) e. Word D ) | 
						
							| 29 | 15 28 | syl |  |-  ( ph -> ( W prefix E ) e. Word D ) | 
						
							| 30 |  | ccatcl |  |-  ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 31 | 29 23 30 | syl2anc |  |-  ( ph -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 32 |  | swrdcl |  |-  ( W e. Word D -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 33 | 15 32 | syl |  |-  ( ph -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 34 |  | ccatlen |  |-  ( ( ( ( W prefix E ) ++ <" I "> ) e. Word D /\ ( W substr <. E , ( # ` W ) >. ) e. Word D ) -> ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) ) | 
						
							| 35 | 31 33 34 | syl2anc |  |-  ( ph -> ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) ) | 
						
							| 36 |  | ccatws1len |  |-  ( ( W prefix E ) e. Word D -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) | 
						
							| 37 | 29 36 | syl |  |-  ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) | 
						
							| 38 |  | id |  |-  ( w = W -> w = W ) | 
						
							| 39 |  | dmeq |  |-  ( w = W -> dom w = dom W ) | 
						
							| 40 |  | eqidd |  |-  ( w = W -> D = D ) | 
						
							| 41 | 38 39 40 | f1eq123d |  |-  ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) | 
						
							| 42 | 41 | elrab |  |-  ( W e. { w e. Word D | w : dom w -1-1-> D } <-> ( W e. Word D /\ W : dom W -1-1-> D ) ) | 
						
							| 43 | 14 42 | sylib |  |-  ( ph -> ( W e. Word D /\ W : dom W -1-1-> D ) ) | 
						
							| 44 |  | f1cnv |  |-  ( W : dom W -1-1-> D -> `' W : ran W -1-1-onto-> dom W ) | 
						
							| 45 | 43 44 | simpl2im |  |-  ( ph -> `' W : ran W -1-1-onto-> dom W ) | 
						
							| 46 |  | f1of |  |-  ( `' W : ran W -1-1-onto-> dom W -> `' W : ran W --> dom W ) | 
						
							| 47 | 45 46 | syl |  |-  ( ph -> `' W : ran W --> dom W ) | 
						
							| 48 | 47 6 | ffvelcdmd |  |-  ( ph -> ( `' W ` J ) e. dom W ) | 
						
							| 49 |  | wrddm |  |-  ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 50 | 15 49 | syl |  |-  ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 51 | 48 50 | eleqtrd |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 52 |  | fzofzp1 |  |-  ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 53 | 51 52 | syl |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 54 | 7 53 | eqeltrid |  |-  ( ph -> E e. ( 0 ... ( # ` W ) ) ) | 
						
							| 55 |  | pfxlen |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix E ) ) = E ) | 
						
							| 56 | 15 54 55 | syl2anc |  |-  ( ph -> ( # ` ( W prefix E ) ) = E ) | 
						
							| 57 | 56 | oveq1d |  |-  ( ph -> ( ( # ` ( W prefix E ) ) + 1 ) = ( E + 1 ) ) | 
						
							| 58 | 37 57 | eqtrd |  |-  ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( E + 1 ) ) | 
						
							| 59 |  | nn0fz0 |  |-  ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 60 | 17 59 | sylib |  |-  ( ph -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 61 |  | swrdlen |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. E , ( # ` W ) >. ) ) = ( ( # ` W ) - E ) ) | 
						
							| 62 | 15 54 60 61 | syl3anc |  |-  ( ph -> ( # ` ( W substr <. E , ( # ` W ) >. ) ) = ( ( # ` W ) - E ) ) | 
						
							| 63 | 58 62 | oveq12d |  |-  ( ph -> ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) | 
						
							| 64 | 27 35 63 | 3eqtrd |  |-  ( ph -> ( # ` U ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) | 
						
							| 65 |  | fz0ssnn0 |  |-  ( 0 ... ( # ` W ) ) C_ NN0 | 
						
							| 66 | 65 54 | sselid |  |-  ( ph -> E e. NN0 ) | 
						
							| 67 | 66 | nn0zd |  |-  ( ph -> E e. ZZ ) | 
						
							| 68 | 67 | peano2zd |  |-  ( ph -> ( E + 1 ) e. ZZ ) | 
						
							| 69 | 68 | zcnd |  |-  ( ph -> ( E + 1 ) e. CC ) | 
						
							| 70 | 66 | nn0cnd |  |-  ( ph -> E e. CC ) | 
						
							| 71 | 69 18 70 | addsubassd |  |-  ( ph -> ( ( ( E + 1 ) + ( # ` W ) ) - E ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) | 
						
							| 72 | 70 19 18 | addassd |  |-  ( ph -> ( ( E + 1 ) + ( # ` W ) ) = ( E + ( 1 + ( # ` W ) ) ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ph -> ( ( ( E + 1 ) + ( # ` W ) ) - E ) = ( ( E + ( 1 + ( # ` W ) ) ) - E ) ) | 
						
							| 74 | 64 71 73 | 3eqtr2d |  |-  ( ph -> ( # ` U ) = ( ( E + ( 1 + ( # ` W ) ) ) - E ) ) | 
						
							| 75 | 19 18 | addcld |  |-  ( ph -> ( 1 + ( # ` W ) ) e. CC ) | 
						
							| 76 | 70 75 | pncan2d |  |-  ( ph -> ( ( E + ( 1 + ( # ` W ) ) ) - E ) = ( 1 + ( # ` W ) ) ) | 
						
							| 77 | 19 18 | addcomd |  |-  ( ph -> ( 1 + ( # ` W ) ) = ( ( # ` W ) + 1 ) ) | 
						
							| 78 | 74 76 77 | 3eqtrd |  |-  ( ph -> ( # ` U ) = ( ( # ` W ) + 1 ) ) | 
						
							| 79 | 18 19 78 | mvrraddd |  |-  ( ph -> ( ( # ` U ) - 1 ) = ( # ` W ) ) |